| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tmsbas.k | ⊢ 𝐾  =  ( toMetSp ‘ 𝐷 ) | 
						
							| 2 | 1 | tmsds | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷  =  ( dist ‘ 𝐾 ) ) | 
						
							| 3 | 1 | tmsbas | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ( Base ‘ 𝐾 ) ) | 
						
							| 4 | 3 | fveq2d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( ∞Met ‘ 𝑋 )  =  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 5 | 2 4 | eleq12d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ↔  ( dist ‘ 𝐾 )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) ) | 
						
							| 6 | 5 | ibi | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( dist ‘ 𝐾 )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 7 |  | ssid | ⊢ ( Base ‘ 𝐾 )  ⊆  ( Base ‘ 𝐾 ) | 
						
							| 8 |  | xmetres2 | ⊢ ( ( ( dist ‘ 𝐾 )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) )  ∧  ( Base ‘ 𝐾 )  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 9 | 6 7 8 | sylancl | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) ) ) | 
						
							| 10 |  | xmetf | ⊢ ( ( dist ‘ 𝐾 )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) )  →  ( dist ‘ 𝐾 ) : ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ⟶ ℝ* ) | 
						
							| 11 |  | ffn | ⊢ ( ( dist ‘ 𝐾 ) : ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ⟶ ℝ*  →  ( dist ‘ 𝐾 )  Fn  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) | 
						
							| 12 |  | fnresdm | ⊢ ( ( dist ‘ 𝐾 )  Fn  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) )  →  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  =  ( dist ‘ 𝐾 ) ) | 
						
							| 13 | 6 10 11 12 | 4syl | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  =  ( dist ‘ 𝐾 ) ) | 
						
							| 14 | 13 2 | eqtr4d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  =  𝐷 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( MetOpen ‘ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 16 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 17 | 1 16 | tmstopn | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( MetOpen ‘ 𝐷 )  =  ( TopOpen ‘ 𝐾 ) ) | 
						
							| 18 | 15 17 | eqtr2d | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( TopOpen ‘ 𝐾 )  =  ( MetOpen ‘ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( TopOpen ‘ 𝐾 )  =  ( TopOpen ‘ 𝐾 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 21 |  | eqid | ⊢ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  =  ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) | 
						
							| 22 | 19 20 21 | isxms2 | ⊢ ( 𝐾  ∈  ∞MetSp  ↔  ( ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝐾 ) )  ∧  ( TopOpen ‘ 𝐾 )  =  ( MetOpen ‘ ( ( dist ‘ 𝐾 )  ↾  ( ( Base ‘ 𝐾 )  ×  ( Base ‘ 𝐾 ) ) ) ) ) ) | 
						
							| 23 | 9 18 22 | sylanbrc | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐾  ∈  ∞MetSp ) |