Step |
Hyp |
Ref |
Expression |
1 |
|
tmsxps.p |
⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) |
2 |
|
tmsxps.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
3 |
|
tmsxps.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) |
4 |
|
eqid |
⊢ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) = ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) |
7 |
|
eqid |
⊢ ( toMetSp ‘ 𝑀 ) = ( toMetSp ‘ 𝑀 ) |
8 |
7
|
tmsxms |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
10 |
|
eqid |
⊢ ( toMetSp ‘ 𝑁 ) = ( toMetSp ‘ 𝑁 ) |
11 |
10
|
tmsxms |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
13 |
4 5 6 9 12 1
|
xpsdsfn2 |
⊢ ( 𝜑 → 𝑃 Fn ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
14 |
|
fnresdm |
⊢ ( 𝑃 Fn ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = 𝑃 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) = 𝑃 ) |
16 |
4
|
xpsxms |
⊢ ( ( ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ∧ ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) → ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp ) |
17 |
9 12 16
|
syl2anc |
⊢ ( 𝜑 → ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp ) |
18 |
|
eqid |
⊢ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) = ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) |
19 |
18 1
|
xmsxmet2 |
⊢ ( ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ∈ ∞MetSp → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
20 |
17 19
|
syl |
⊢ ( 𝜑 → ( 𝑃 ↾ ( ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) × ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
21 |
15 20
|
eqeltrrd |
⊢ ( 𝜑 → 𝑃 ∈ ( ∞Met ‘ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
22 |
7
|
tmsbas |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
23 |
2 22
|
syl |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
24 |
10
|
tmsbas |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝑌 = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
25 |
3 24
|
syl |
⊢ ( 𝜑 → 𝑌 = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
26 |
23 25
|
xpeq12d |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
27 |
4 5 6 9 12
|
xpsbas |
⊢ ( 𝜑 → ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) = ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) |
28 |
26 27
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( ∞Met ‘ ( 𝑋 × 𝑌 ) ) = ( ∞Met ‘ ( Base ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) ) ) |
30 |
21 29
|
eleqtrrd |
⊢ ( 𝜑 → 𝑃 ∈ ( ∞Met ‘ ( 𝑋 × 𝑌 ) ) ) |