Step |
Hyp |
Ref |
Expression |
1 |
|
tmsxps.p |
⊢ 𝑃 = ( dist ‘ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) ) |
2 |
|
tmsxps.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
3 |
|
tmsxps.2 |
⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) |
4 |
|
tmsxpsval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
5 |
|
tmsxpsval.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) |
6 |
|
tmsxpsval.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) |
7 |
|
tmsxpsval.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑌 ) |
8 |
|
eqid |
⊢ ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) = ( ( toMetSp ‘ 𝑀 ) ×s ( toMetSp ‘ 𝑁 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) |
11 |
|
eqid |
⊢ ( toMetSp ‘ 𝑀 ) = ( toMetSp ‘ 𝑀 ) |
12 |
11
|
tmsxms |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → ( toMetSp ‘ 𝑀 ) ∈ ∞MetSp ) |
14 |
|
eqid |
⊢ ( toMetSp ‘ 𝑁 ) = ( toMetSp ‘ 𝑁 ) |
15 |
14
|
tmsxms |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → ( toMetSp ‘ 𝑁 ) ∈ ∞MetSp ) |
17 |
|
eqid |
⊢ ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) = ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) |
18 |
|
eqid |
⊢ ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) = ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
19 |
11
|
tmsds |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑀 = ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ) |
20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝑀 = ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ) |
21 |
11
|
tmsbas |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
22 |
2 21
|
syl |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( ∞Met ‘ 𝑋 ) = ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) |
24 |
2 20 23
|
3eltr3d |
⊢ ( 𝜑 → ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) |
25 |
|
ssid |
⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ⊆ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) |
26 |
|
xmetres2 |
⊢ ( ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ∧ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ⊆ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) → ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) |
27 |
24 25 26
|
sylancl |
⊢ ( 𝜑 → ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) |
28 |
14
|
tmsds |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝑁 = ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ) |
29 |
3 28
|
syl |
⊢ ( 𝜑 → 𝑁 = ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ) |
30 |
14
|
tmsbas |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝑌 = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
31 |
3 30
|
syl |
⊢ ( 𝜑 → 𝑌 = ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝜑 → ( ∞Met ‘ 𝑌 ) = ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
33 |
3 29 32
|
3eltr3d |
⊢ ( 𝜑 → ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
34 |
|
ssid |
⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ⊆ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) |
35 |
|
xmetres2 |
⊢ ( ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ∧ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ⊆ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) → ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
36 |
33 34 35
|
sylancl |
⊢ ( 𝜑 → ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) ∈ ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) |
37 |
4 22
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
38 |
5 31
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
39 |
6 22
|
eleqtrd |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) |
40 |
7 31
|
eleqtrd |
⊢ ( 𝜑 → 𝐷 ∈ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) |
41 |
8 9 10 13 16 1 17 18 27 36 37 38 39 40
|
xpsdsval |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝑃 〈 𝐶 , 𝐷 〉 ) = sup ( { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) , ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) } , ℝ* , < ) ) |
42 |
37 39
|
ovresd |
⊢ ( 𝜑 → ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) = ( 𝐴 ( dist ‘ ( toMetSp ‘ 𝑀 ) ) 𝐶 ) ) |
43 |
20
|
oveqd |
⊢ ( 𝜑 → ( 𝐴 𝑀 𝐶 ) = ( 𝐴 ( dist ‘ ( toMetSp ‘ 𝑀 ) ) 𝐶 ) ) |
44 |
42 43
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) = ( 𝐴 𝑀 𝐶 ) ) |
45 |
38 40
|
ovresd |
⊢ ( 𝜑 → ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) = ( 𝐵 ( dist ‘ ( toMetSp ‘ 𝑁 ) ) 𝐷 ) ) |
46 |
29
|
oveqd |
⊢ ( 𝜑 → ( 𝐵 𝑁 𝐷 ) = ( 𝐵 ( dist ‘ ( toMetSp ‘ 𝑁 ) ) 𝐷 ) ) |
47 |
45 46
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) = ( 𝐵 𝑁 𝐷 ) ) |
48 |
44 47
|
preq12d |
⊢ ( 𝜑 → { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) , ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) } = { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } ) |
49 |
48
|
supeq1d |
⊢ ( 𝜑 → sup ( { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑀 ) ) × ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) , ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ↾ ( ( Base ‘ ( toMetSp ‘ 𝑁 ) ) × ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) } , ℝ* , < ) = sup ( { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } , ℝ* , < ) ) |
50 |
41 49
|
eqtrd |
⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝑃 〈 𝐶 , 𝐷 〉 ) = sup ( { ( 𝐴 𝑀 𝐶 ) , ( 𝐵 𝑁 𝐷 ) } , ℝ* , < ) ) |