| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tmsxps.p | ⊢ 𝑃  =  ( dist ‘ ( ( toMetSp ‘ 𝑀 )  ×s  ( toMetSp ‘ 𝑁 ) ) ) | 
						
							| 2 |  | tmsxps.1 | ⊢ ( 𝜑  →  𝑀  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 3 |  | tmsxps.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 4 |  | tmsxpsval.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 5 |  | tmsxpsval.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑌 ) | 
						
							| 6 |  | tmsxpsval.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑋 ) | 
						
							| 7 |  | tmsxpsval.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑌 ) | 
						
							| 8 |  | eqid | ⊢ ( ( toMetSp ‘ 𝑀 )  ×s  ( toMetSp ‘ 𝑁 ) )  =  ( ( toMetSp ‘ 𝑀 )  ×s  ( toMetSp ‘ 𝑁 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) )  =  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) )  =  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) | 
						
							| 11 |  | eqid | ⊢ ( toMetSp ‘ 𝑀 )  =  ( toMetSp ‘ 𝑀 ) | 
						
							| 12 | 11 | tmsxms | ⊢ ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  →  ( toMetSp ‘ 𝑀 )  ∈  ∞MetSp ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  ( toMetSp ‘ 𝑀 )  ∈  ∞MetSp ) | 
						
							| 14 |  | eqid | ⊢ ( toMetSp ‘ 𝑁 )  =  ( toMetSp ‘ 𝑁 ) | 
						
							| 15 | 14 | tmsxms | ⊢ ( 𝑁  ∈  ( ∞Met ‘ 𝑌 )  →  ( toMetSp ‘ 𝑁 )  ∈  ∞MetSp ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  ( toMetSp ‘ 𝑁 )  ∈  ∞MetSp ) | 
						
							| 17 |  | eqid | ⊢ ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) )  =  ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) )  =  ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) | 
						
							| 19 | 11 | tmsds | ⊢ ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  →  𝑀  =  ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ) | 
						
							| 20 | 2 19 | syl | ⊢ ( 𝜑  →  𝑀  =  ( dist ‘ ( toMetSp ‘ 𝑀 ) ) ) | 
						
							| 21 | 11 | tmsbas | ⊢ ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  →  𝑋  =  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) | 
						
							| 22 | 2 21 | syl | ⊢ ( 𝜑  →  𝑋  =  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( ∞Met ‘ 𝑋 )  =  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) | 
						
							| 24 | 2 20 23 | 3eltr3d | ⊢ ( 𝜑  →  ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ∈  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) | 
						
							| 25 |  | ssid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ⊆  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) | 
						
							| 26 |  | xmetres2 | ⊢ ( ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ∈  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) )  ∧  ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ⊆  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) )  →  ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) )  ∈  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) | 
						
							| 27 | 24 25 26 | sylancl | ⊢ ( 𝜑  →  ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) )  ∈  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) | 
						
							| 28 | 14 | tmsds | ⊢ ( 𝑁  ∈  ( ∞Met ‘ 𝑌 )  →  𝑁  =  ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ) | 
						
							| 29 | 3 28 | syl | ⊢ ( 𝜑  →  𝑁  =  ( dist ‘ ( toMetSp ‘ 𝑁 ) ) ) | 
						
							| 30 | 14 | tmsbas | ⊢ ( 𝑁  ∈  ( ∞Met ‘ 𝑌 )  →  𝑌  =  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) | 
						
							| 31 | 3 30 | syl | ⊢ ( 𝜑  →  𝑌  =  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝜑  →  ( ∞Met ‘ 𝑌 )  =  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) | 
						
							| 33 | 3 29 32 | 3eltr3d | ⊢ ( 𝜑  →  ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ∈  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) | 
						
							| 34 |  | ssid | ⊢ ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ⊆  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) | 
						
							| 35 |  | xmetres2 | ⊢ ( ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ∈  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) )  ∧  ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ⊆  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) )  →  ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) )  ∈  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) | 
						
							| 36 | 33 34 35 | sylancl | ⊢ ( 𝜑  →  ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) )  ∈  ( ∞Met ‘ ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) | 
						
							| 37 | 4 22 | eleqtrd | ⊢ ( 𝜑  →  𝐴  ∈  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) | 
						
							| 38 | 5 31 | eleqtrd | ⊢ ( 𝜑  →  𝐵  ∈  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) | 
						
							| 39 | 6 22 | eleqtrd | ⊢ ( 𝜑  →  𝐶  ∈  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) | 
						
							| 40 | 7 31 | eleqtrd | ⊢ ( 𝜑  →  𝐷  ∈  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) | 
						
							| 41 | 8 9 10 13 16 1 17 18 27 36 37 38 39 40 | xpsdsval | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 𝑃 〈 𝐶 ,  𝐷 〉 )  =  sup ( { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) ,  ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) } ,  ℝ* ,   <  ) ) | 
						
							| 42 | 37 39 | ovresd | ⊢ ( 𝜑  →  ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 )  =  ( 𝐴 ( dist ‘ ( toMetSp ‘ 𝑀 ) ) 𝐶 ) ) | 
						
							| 43 | 20 | oveqd | ⊢ ( 𝜑  →  ( 𝐴 𝑀 𝐶 )  =  ( 𝐴 ( dist ‘ ( toMetSp ‘ 𝑀 ) ) 𝐶 ) ) | 
						
							| 44 | 42 43 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 )  =  ( 𝐴 𝑀 𝐶 ) ) | 
						
							| 45 | 38 40 | ovresd | ⊢ ( 𝜑  →  ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 )  =  ( 𝐵 ( dist ‘ ( toMetSp ‘ 𝑁 ) ) 𝐷 ) ) | 
						
							| 46 | 29 | oveqd | ⊢ ( 𝜑  →  ( 𝐵 𝑁 𝐷 )  =  ( 𝐵 ( dist ‘ ( toMetSp ‘ 𝑁 ) ) 𝐷 ) ) | 
						
							| 47 | 45 46 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 )  =  ( 𝐵 𝑁 𝐷 ) ) | 
						
							| 48 | 44 47 | preq12d | ⊢ ( 𝜑  →  { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) ,  ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) }  =  { ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) } ) | 
						
							| 49 | 48 | supeq1d | ⊢ ( 𝜑  →  sup ( { ( 𝐴 ( ( dist ‘ ( toMetSp ‘ 𝑀 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑀 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑀 ) ) ) ) 𝐶 ) ,  ( 𝐵 ( ( dist ‘ ( toMetSp ‘ 𝑁 ) )  ↾  ( ( Base ‘ ( toMetSp ‘ 𝑁 ) )  ×  ( Base ‘ ( toMetSp ‘ 𝑁 ) ) ) ) 𝐷 ) } ,  ℝ* ,   <  )  =  sup ( { ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) } ,  ℝ* ,   <  ) ) | 
						
							| 50 | 41 49 | eqtrd | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 𝑃 〈 𝐶 ,  𝐷 〉 )  =  sup ( { ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) } ,  ℝ* ,   <  ) ) |