| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tmsxps.p | ⊢ 𝑃  =  ( dist ‘ ( ( toMetSp ‘ 𝑀 )  ×s  ( toMetSp ‘ 𝑁 ) ) ) | 
						
							| 2 |  | tmsxps.1 | ⊢ ( 𝜑  →  𝑀  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 3 |  | tmsxps.2 | ⊢ ( 𝜑  →  𝑁  ∈  ( ∞Met ‘ 𝑌 ) ) | 
						
							| 4 |  | tmsxpsval.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 5 |  | tmsxpsval.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑌 ) | 
						
							| 6 |  | tmsxpsval.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑋 ) | 
						
							| 7 |  | tmsxpsval.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑌 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | tmsxpsval | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 𝑃 〈 𝐶 ,  𝐷 〉 )  =  sup ( { ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) } ,  ℝ* ,   <  ) ) | 
						
							| 9 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 10 |  | xmetcl | ⊢ ( ( 𝑀  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴 𝑀 𝐶 )  ∈  ℝ* ) | 
						
							| 11 | 2 4 6 10 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴 𝑀 𝐶 )  ∈  ℝ* ) | 
						
							| 12 |  | xmetcl | ⊢ ( ( 𝑁  ∈  ( ∞Met ‘ 𝑌 )  ∧  𝐵  ∈  𝑌  ∧  𝐷  ∈  𝑌 )  →  ( 𝐵 𝑁 𝐷 )  ∈  ℝ* ) | 
						
							| 13 | 3 5 7 12 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵 𝑁 𝐷 )  ∈  ℝ* ) | 
						
							| 14 |  | suppr | ⊢ ( (  <   Or  ℝ*  ∧  ( 𝐴 𝑀 𝐶 )  ∈  ℝ*  ∧  ( 𝐵 𝑁 𝐷 )  ∈  ℝ* )  →  sup ( { ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) } ,  ℝ* ,   <  )  =  if ( ( 𝐵 𝑁 𝐷 )  <  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) ) ) | 
						
							| 15 | 9 11 13 14 | mp3an2i | ⊢ ( 𝜑  →  sup ( { ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) } ,  ℝ* ,   <  )  =  if ( ( 𝐵 𝑁 𝐷 )  <  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) ) ) | 
						
							| 16 |  | xrltnle | ⊢ ( ( ( 𝐵 𝑁 𝐷 )  ∈  ℝ*  ∧  ( 𝐴 𝑀 𝐶 )  ∈  ℝ* )  →  ( ( 𝐵 𝑁 𝐷 )  <  ( 𝐴 𝑀 𝐶 )  ↔  ¬  ( 𝐴 𝑀 𝐶 )  ≤  ( 𝐵 𝑁 𝐷 ) ) ) | 
						
							| 17 | 13 11 16 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐵 𝑁 𝐷 )  <  ( 𝐴 𝑀 𝐶 )  ↔  ¬  ( 𝐴 𝑀 𝐶 )  ≤  ( 𝐵 𝑁 𝐷 ) ) ) | 
						
							| 18 | 17 | ifbid | ⊢ ( 𝜑  →  if ( ( 𝐵 𝑁 𝐷 )  <  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) )  =  if ( ¬  ( 𝐴 𝑀 𝐶 )  ≤  ( 𝐵 𝑁 𝐷 ) ,  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) ) ) | 
						
							| 19 |  | ifnot | ⊢ if ( ¬  ( 𝐴 𝑀 𝐶 )  ≤  ( 𝐵 𝑁 𝐷 ) ,  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) )  =  if ( ( 𝐴 𝑀 𝐶 )  ≤  ( 𝐵 𝑁 𝐷 ) ,  ( 𝐵 𝑁 𝐷 ) ,  ( 𝐴 𝑀 𝐶 ) ) | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( 𝜑  →  if ( ( 𝐵 𝑁 𝐷 )  <  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐴 𝑀 𝐶 ) ,  ( 𝐵 𝑁 𝐷 ) )  =  if ( ( 𝐴 𝑀 𝐶 )  ≤  ( 𝐵 𝑁 𝐷 ) ,  ( 𝐵 𝑁 𝐷 ) ,  ( 𝐴 𝑀 𝐶 ) ) ) | 
						
							| 21 | 8 15 20 | 3eqtrd | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 𝑃 〈 𝐶 ,  𝐷 〉 )  =  if ( ( 𝐴 𝑀 𝐶 )  ≤  ( 𝐵 𝑁 𝐷 ) ,  ( 𝐵 𝑁 𝐷 ) ,  ( 𝐴 𝑀 𝐶 ) ) ) |