Metamath Proof Explorer


Theorem tng0

Description: The group identity of a structure augmented with a norm. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
tng0.2 0 = ( 0g𝐺 )
Assertion tng0 ( 𝑁𝑉0 = ( 0g𝑇 ) )

Proof

Step Hyp Ref Expression
1 tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
2 tng0.2 0 = ( 0g𝐺 )
3 eqidd ( 𝑁𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
4 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
5 1 4 tngbas ( 𝑁𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) )
6 eqid ( +g𝐺 ) = ( +g𝐺 )
7 1 6 tngplusg ( 𝑁𝑉 → ( +g𝐺 ) = ( +g𝑇 ) )
8 7 oveqdr ( ( 𝑁𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑥 ( +g𝑇 ) 𝑦 ) )
9 3 5 8 grpidpropd ( 𝑁𝑉 → ( 0g𝐺 ) = ( 0g𝑇 ) )
10 2 9 syl5eq ( 𝑁𝑉0 = ( 0g𝑇 ) )