| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngbas.t | ⊢ 𝑇  =  ( 𝐺  toNrmGrp  𝑁 ) | 
						
							| 2 |  | tng0.2 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | eqidd | ⊢ ( 𝑁  ∈  𝑉  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 5 | 1 4 | tngbas | ⊢ ( 𝑁  ∈  𝑉  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝑇 ) ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 7 | 1 6 | tngplusg | ⊢ ( 𝑁  ∈  𝑉  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝑇 ) ) | 
						
							| 8 | 7 | oveqdr | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) | 
						
							| 9 | 3 5 8 | grpidpropd | ⊢ ( 𝑁  ∈  𝑉  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 10 | 2 9 | eqtrid | ⊢ ( 𝑁  ∈  𝑉  →   0   =  ( 0g ‘ 𝑇 ) ) |