Step |
Hyp |
Ref |
Expression |
1 |
|
tngbas.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
tngds.2 |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
dsid |
⊢ dist = Slot ( dist ‘ ndx ) |
4 |
|
9re |
⊢ 9 ∈ ℝ |
5 |
|
1nn |
⊢ 1 ∈ ℕ |
6 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
7 |
|
9nn0 |
⊢ 9 ∈ ℕ0 |
8 |
|
9lt10 |
⊢ 9 < ; 1 0 |
9 |
5 6 7 8
|
declti |
⊢ 9 < ; 1 2 |
10 |
4 9
|
gtneii |
⊢ ; 1 2 ≠ 9 |
11 |
|
dsndx |
⊢ ( dist ‘ ndx ) = ; 1 2 |
12 |
|
tsetndx |
⊢ ( TopSet ‘ ndx ) = 9 |
13 |
11 12
|
neeq12i |
⊢ ( ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx ) ↔ ; 1 2 ≠ 9 ) |
14 |
10 13
|
mpbir |
⊢ ( dist ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
15 |
3 14
|
setsnid |
⊢ ( dist ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ − ) ) 〉 ) ) |
16 |
2
|
fvexi |
⊢ − ∈ V |
17 |
|
coexg |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ − ∈ V ) → ( 𝑁 ∘ − ) ∈ V ) |
18 |
16 17
|
mpan2 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑁 ∘ − ) ∈ V ) |
19 |
3
|
setsid |
⊢ ( ( 𝐺 ∈ V ∧ ( 𝑁 ∘ − ) ∈ V ) → ( 𝑁 ∘ − ) = ( dist ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) ) ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∘ − ) = ( dist ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) ) ) |
21 |
|
eqid |
⊢ ( 𝑁 ∘ − ) = ( 𝑁 ∘ − ) |
22 |
|
eqid |
⊢ ( MetOpen ‘ ( 𝑁 ∘ − ) ) = ( MetOpen ‘ ( 𝑁 ∘ − ) ) |
23 |
1 2 21 22
|
tngval |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → 𝑇 = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ − ) ) 〉 ) ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( dist ‘ 𝑇 ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ − ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ − ) ) 〉 ) ) ) |
25 |
15 20 24
|
3eqtr4a |
⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
26 |
|
co02 |
⊢ ( 𝑁 ∘ ∅ ) = ∅ |
27 |
|
df-ds |
⊢ dist = Slot ; 1 2 |
28 |
27
|
str0 |
⊢ ∅ = ( dist ‘ ∅ ) |
29 |
26 28
|
eqtri |
⊢ ( 𝑁 ∘ ∅ ) = ( dist ‘ ∅ ) |
30 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( -g ‘ 𝐺 ) = ∅ ) |
31 |
2 30
|
syl5eq |
⊢ ( ¬ 𝐺 ∈ V → − = ∅ ) |
32 |
31
|
coeq2d |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑁 ∘ − ) = ( 𝑁 ∘ ∅ ) ) |
33 |
|
reldmtng |
⊢ Rel dom toNrmGrp |
34 |
33
|
ovprc1 |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐺 toNrmGrp 𝑁 ) = ∅ ) |
35 |
1 34
|
syl5eq |
⊢ ( ¬ 𝐺 ∈ V → 𝑇 = ∅ ) |
36 |
35
|
fveq2d |
⊢ ( ¬ 𝐺 ∈ V → ( dist ‘ 𝑇 ) = ( dist ‘ ∅ ) ) |
37 |
29 32 36
|
3eqtr4a |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
38 |
37
|
adantr |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
39 |
25 38
|
pm2.61ian |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |