Step |
Hyp |
Ref |
Expression |
1 |
|
tngngp3.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
1 2
|
tngbas |
⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
4 |
|
eqidd |
⊢ ( 𝑁 ∈ 𝑉 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
1 5
|
tngplusg |
⊢ ( 𝑁 ∈ 𝑉 → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
7 |
6
|
eqcomd |
⊢ ( 𝑁 ∈ 𝑉 → ( +g ‘ 𝑇 ) = ( +g ‘ 𝐺 ) ) |
8 |
7
|
oveqdr |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
9 |
3 4 8
|
grppropd |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑇 ∈ Grp ↔ 𝐺 ∈ Grp ) ) |
10 |
9
|
biimpd |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑇 ∈ Grp → 𝐺 ∈ Grp ) ) |
11 |
|
ngpgrp |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp ) |
12 |
10 11
|
impel |
⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |