| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngngp3.t | ⊢ 𝑇  =  ( 𝐺  toNrmGrp  𝑁 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 3 | 1 2 | tngbas | ⊢ ( 𝑁  ∈  𝑉  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝑇 ) ) | 
						
							| 4 |  | eqidd | ⊢ ( 𝑁  ∈  𝑉  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 6 | 1 5 | tngplusg | ⊢ ( 𝑁  ∈  𝑉  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝑇 ) ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝑁  ∈  𝑉  →  ( +g ‘ 𝑇 )  =  ( +g ‘ 𝐺 ) ) | 
						
							| 8 | 7 | oveqdr | ⊢ ( ( 𝑁  ∈  𝑉  ∧  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ∧  𝑦  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 9 | 3 4 8 | grppropd | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑇  ∈  Grp  ↔  𝐺  ∈  Grp ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( 𝑁  ∈  𝑉  →  ( 𝑇  ∈  Grp  →  𝐺  ∈  Grp ) ) | 
						
							| 11 |  | ngpgrp | ⊢ ( 𝑇  ∈  NrmGrp  →  𝑇  ∈  Grp ) | 
						
							| 12 | 10 11 | impel | ⊢ ( ( 𝑁  ∈  𝑉  ∧  𝑇  ∈  NrmGrp )  →  𝐺  ∈  Grp ) |