Metamath Proof Explorer


Theorem tnglem

Description: Lemma for tngbas and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
tnglem.2 𝐸 = Slot 𝐾
tnglem.3 𝐾 ∈ ℕ
tnglem.4 𝐾 < 9
Assertion tnglem ( 𝑁𝑉 → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )

Proof

Step Hyp Ref Expression
1 tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
2 tnglem.2 𝐸 = Slot 𝐾
3 tnglem.3 𝐾 ∈ ℕ
4 tnglem.4 𝐾 < 9
5 2 3 ndxid 𝐸 = Slot ( 𝐸 ‘ ndx )
6 2 3 ndxarg ( 𝐸 ‘ ndx ) = 𝐾
7 3 nnrei 𝐾 ∈ ℝ
8 6 7 eqeltri ( 𝐸 ‘ ndx ) ∈ ℝ
9 6 4 eqbrtri ( 𝐸 ‘ ndx ) < 9
10 1nn 1 ∈ ℕ
11 2nn0 2 ∈ ℕ0
12 9nn0 9 ∈ ℕ0
13 9lt10 9 < 1 0
14 10 11 12 13 declti 9 < 1 2
15 9re 9 ∈ ℝ
16 1nn0 1 ∈ ℕ0
17 16 11 deccl 1 2 ∈ ℕ0
18 17 nn0rei 1 2 ∈ ℝ
19 8 15 18 lttri ( ( ( 𝐸 ‘ ndx ) < 9 ∧ 9 < 1 2 ) → ( 𝐸 ‘ ndx ) < 1 2 )
20 9 14 19 mp2an ( 𝐸 ‘ ndx ) < 1 2
21 8 20 ltneii ( 𝐸 ‘ ndx ) ≠ 1 2
22 dsndx ( dist ‘ ndx ) = 1 2
23 21 22 neeqtrri ( 𝐸 ‘ ndx ) ≠ ( dist ‘ ndx )
24 5 23 setsnid ( 𝐸𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) )
25 8 9 ltneii ( 𝐸 ‘ ndx ) ≠ 9
26 tsetndx ( TopSet ‘ ndx ) = 9
27 25 26 neeqtrri ( 𝐸 ‘ ndx ) ≠ ( TopSet ‘ ndx )
28 5 27 setsnid ( 𝐸 ‘ ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) ⟩ ) )
29 24 28 eqtri ( 𝐸𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) ⟩ ) )
30 eqid ( -g𝐺 ) = ( -g𝐺 )
31 eqid ( 𝑁 ∘ ( -g𝐺 ) ) = ( 𝑁 ∘ ( -g𝐺 ) )
32 eqid ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) )
33 1 30 31 32 tngval ( ( 𝐺 ∈ V ∧ 𝑁𝑉 ) → 𝑇 = ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) ⟩ ) )
34 33 fveq2d ( ( 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐸𝑇 ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g𝐺 ) ) ⟩ ) sSet ⟨ ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g𝐺 ) ) ) ⟩ ) ) )
35 29 34 eqtr4id ( ( 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )
36 2 str0 ∅ = ( 𝐸 ‘ ∅ )
37 fvprc ( ¬ 𝐺 ∈ V → ( 𝐸𝐺 ) = ∅ )
38 37 adantr ( ( ¬ 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐸𝐺 ) = ∅ )
39 reldmtng Rel dom toNrmGrp
40 39 ovprc1 ( ¬ 𝐺 ∈ V → ( 𝐺 toNrmGrp 𝑁 ) = ∅ )
41 40 adantr ( ( ¬ 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐺 toNrmGrp 𝑁 ) = ∅ )
42 1 41 syl5eq ( ( ¬ 𝐺 ∈ V ∧ 𝑁𝑉 ) → 𝑇 = ∅ )
43 42 fveq2d ( ( ¬ 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐸𝑇 ) = ( 𝐸 ‘ ∅ ) )
44 36 38 43 3eqtr4a ( ( ¬ 𝐺 ∈ V ∧ 𝑁𝑉 ) → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )
45 35 44 pm2.61ian ( 𝑁𝑉 → ( 𝐸𝐺 ) = ( 𝐸𝑇 ) )