Description: The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngmulr.2 | ⊢ · = ( .r ‘ 𝐺 ) | ||
| Assertion | tngmulr | ⊢ ( 𝑁 ∈ 𝑉 → · = ( .r ‘ 𝑇 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngmulr.2 | ⊢ · = ( .r ‘ 𝐺 ) | |
| 3 | mulridx | ⊢ .r = Slot ( .r ‘ ndx ) | |
| 4 | tsetndxnmulrndx | ⊢ ( TopSet ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 5 | 4 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( TopSet ‘ ndx ) | 
| 6 | dsndxnmulrndx | ⊢ ( dist ‘ ndx ) ≠ ( .r ‘ ndx ) | |
| 7 | 6 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( dist ‘ ndx ) | 
| 8 | 1 3 5 7 | tnglem | ⊢ ( 𝑁 ∈ 𝑉 → ( .r ‘ 𝐺 ) = ( .r ‘ 𝑇 ) ) | 
| 9 | 2 8 | eqtrid | ⊢ ( 𝑁 ∈ 𝑉 → · = ( .r ‘ 𝑇 ) ) |