Metamath Proof Explorer


Theorem tngmulr

Description: The ring multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
tngmulr.2 · = ( .r𝐺 )
Assertion tngmulr ( 𝑁𝑉· = ( .r𝑇 ) )

Proof

Step Hyp Ref Expression
1 tngbas.t 𝑇 = ( 𝐺 toNrmGrp 𝑁 )
2 tngmulr.2 · = ( .r𝐺 )
3 df-mulr .r = Slot 3
4 3nn 3 ∈ ℕ
5 3lt9 3 < 9
6 1 3 4 5 tnglem ( 𝑁𝑉 → ( .r𝐺 ) = ( .r𝑇 ) )
7 2 6 syl5eq ( 𝑁𝑉· = ( .r𝑇 ) )