Step |
Hyp |
Ref |
Expression |
1 |
|
tngngp2.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
tngngp2.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
tngngp2.d |
⊢ 𝐷 = ( dist ‘ 𝑇 ) |
4 |
|
ngpgrp |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ Grp ) |
5 |
2
|
fvexi |
⊢ 𝑋 ∈ V |
6 |
|
reex |
⊢ ℝ ∈ V |
7 |
|
fex2 |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V ) → 𝑁 ∈ V ) |
8 |
5 6 7
|
mp3an23 |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → 𝑁 ∈ V ) |
9 |
2
|
a1i |
⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝐺 ) ) |
10 |
1 2
|
tngbas |
⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝑇 ) ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
12 |
1 11
|
tngplusg |
⊢ ( 𝑁 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
13 |
12
|
oveqdr |
⊢ ( ( 𝑁 ∈ V ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
14 |
9 10 13
|
grppropd |
⊢ ( 𝑁 ∈ V → ( 𝐺 ∈ Grp ↔ 𝑇 ∈ Grp ) ) |
15 |
8 14
|
syl |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝐺 ∈ Grp ↔ 𝑇 ∈ Grp ) ) |
16 |
4 15
|
syl5ibr |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp → 𝐺 ∈ Grp ) ) |
17 |
16
|
imp |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |
18 |
|
ngpms |
⊢ ( 𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp ) |
19 |
18
|
adantl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝑇 ∈ MetSp ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
21 |
20 3
|
msmet2 |
⊢ ( 𝑇 ∈ MetSp → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
22 |
19 21
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
23 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
24 |
2 23
|
grpsubf |
⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
25 |
17 24
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
26 |
|
fco |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
27 |
25 26
|
syldan |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
28 |
8
|
adantr |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝑁 ∈ V ) |
29 |
1 23
|
tngds |
⊢ ( 𝑁 ∈ V → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
31 |
3 30
|
eqtr4id |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐷 = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) |
32 |
31
|
feq1d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ↔ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
33 |
27 32
|
mpbird |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
34 |
|
ffn |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
35 |
|
fnresdm |
⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 ) |
36 |
33 34 35
|
3syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = 𝐷 ) |
37 |
28 10
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
38 |
37
|
sqxpeqd |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝑋 × 𝑋 ) = ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) |
39 |
38
|
reseq2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) = ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) |
40 |
36 39
|
eqtr3d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐷 = ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) |
41 |
37
|
fveq2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( Met ‘ 𝑋 ) = ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
42 |
22 40 41
|
3eltr4d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
43 |
17 42
|
jca |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑇 ∈ NrmGrp ) → ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
44 |
15
|
biimpa |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝐺 ∈ Grp ) → 𝑇 ∈ Grp ) |
45 |
44
|
adantrr |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑇 ∈ Grp ) |
46 |
|
simprr |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
47 |
8
|
adantr |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑁 ∈ V ) |
48 |
47 10
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( Met ‘ 𝑋 ) = ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
50 |
46 49
|
eleqtrd |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
51 |
|
metf |
⊢ ( 𝐷 ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) → 𝐷 : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ℝ ) |
52 |
50 51
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝐷 : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ℝ ) |
53 |
|
ffn |
⊢ ( 𝐷 : ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ⟶ ℝ → 𝐷 Fn ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) |
54 |
|
fnresdm |
⊢ ( 𝐷 Fn ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) = 𝐷 ) |
55 |
52 53 54
|
3syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) = 𝐷 ) |
56 |
55 50
|
eqeltrd |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ) |
57 |
55
|
fveq2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( MetOpen ‘ ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) = ( MetOpen ‘ 𝐷 ) ) |
58 |
|
simprl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝐺 ∈ Grp ) |
59 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
60 |
1 3 59
|
tngtopn |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ V ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝑇 ) ) |
61 |
58 47 60
|
syl2anc |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( MetOpen ‘ 𝐷 ) = ( TopOpen ‘ 𝑇 ) ) |
62 |
57 61
|
eqtr2d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( TopOpen ‘ 𝑇 ) = ( MetOpen ‘ ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) ) |
63 |
|
eqid |
⊢ ( TopOpen ‘ 𝑇 ) = ( TopOpen ‘ 𝑇 ) |
64 |
3
|
reseq1i |
⊢ ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) = ( ( dist ‘ 𝑇 ) ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) |
65 |
63 20 64
|
isms2 |
⊢ ( 𝑇 ∈ MetSp ↔ ( ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑇 ) ) ∧ ( TopOpen ‘ 𝑇 ) = ( MetOpen ‘ ( 𝐷 ↾ ( ( Base ‘ 𝑇 ) × ( Base ‘ 𝑇 ) ) ) ) ) ) |
66 |
56 62 65
|
sylanbrc |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑇 ∈ MetSp ) |
67 |
|
simpl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑁 : 𝑋 ⟶ ℝ ) |
68 |
1 2 6
|
tngnm |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
69 |
58 67 68
|
syl2anc |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
70 |
9 10
|
eqtr3d |
⊢ ( 𝑁 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
71 |
70 12
|
grpsubpropd |
⊢ ( 𝑁 ∈ V → ( -g ‘ 𝐺 ) = ( -g ‘ 𝑇 ) ) |
72 |
47 71
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( -g ‘ 𝐺 ) = ( -g ‘ 𝑇 ) ) |
73 |
69 72
|
coeq12d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) ) |
74 |
47 29
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
75 |
73 74
|
eqtr3d |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) = ( dist ‘ 𝑇 ) ) |
76 |
|
eqimss |
⊢ ( ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) = ( dist ‘ 𝑇 ) → ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) ⊆ ( dist ‘ 𝑇 ) ) |
77 |
75 76
|
syl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) ⊆ ( dist ‘ 𝑇 ) ) |
78 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
79 |
|
eqid |
⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) |
80 |
|
eqid |
⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) |
81 |
78 79 80
|
isngp |
⊢ ( 𝑇 ∈ NrmGrp ↔ ( 𝑇 ∈ Grp ∧ 𝑇 ∈ MetSp ∧ ( ( norm ‘ 𝑇 ) ∘ ( -g ‘ 𝑇 ) ) ⊆ ( dist ‘ 𝑇 ) ) ) |
82 |
45 66 77 81
|
syl3anbrc |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) → 𝑇 ∈ NrmGrp ) |
83 |
43 82
|
impbida |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) ) |