| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngngp3.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
| 2 |
|
tngngp3.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 3 |
|
tngngp3.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
tngngp3.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 5 |
|
tngngp3.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 6 |
2
|
fvexi |
⊢ 𝑋 ∈ V |
| 7 |
|
fex |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ) → 𝑁 ∈ V ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → 𝑁 ∈ V ) |
| 9 |
1
|
tnggrpr |
⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → 𝐺 ∈ Grp ) |
| 10 |
|
simp2 |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝐺 ∈ Grp ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 12 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
| 13 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
| 14 |
11 12 13
|
nmeq0 |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) |
| 15 |
|
eqid |
⊢ ( invg ‘ 𝑇 ) = ( invg ‘ 𝑇 ) |
| 16 |
11 12 15
|
nminv |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
| 18 |
11 12 17
|
nmtri |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ∧ 𝑦 ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 19 |
18
|
3expa |
⊢ ( ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑇 ) ) → ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 20 |
19
|
ralrimiva |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 21 |
14 16 20
|
3jca |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝑇 ) ) → ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝑇 ∈ NrmGrp → ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 25 |
1 2
|
tngbas |
⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 26 |
1 4
|
tngplusg |
⊢ ( 𝑁 ∈ V → + = ( +g ‘ 𝑇 ) ) |
| 27 |
|
eqidd |
⊢ ( 𝑁 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 28 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 29 |
1 28
|
tngbas |
⊢ ( 𝑁 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑇 ) ) |
| 30 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 31 |
1 30
|
tngplusg |
⊢ ( 𝑁 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑇 ) ) |
| 32 |
31
|
oveqd |
⊢ ( 𝑁 ∈ V → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝑁 ∈ V ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 34 |
27 29 33
|
grpinvpropd |
⊢ ( 𝑁 ∈ V → ( invg ‘ 𝐺 ) = ( invg ‘ 𝑇 ) ) |
| 35 |
5 34
|
eqtrid |
⊢ ( 𝑁 ∈ V → 𝐼 = ( invg ‘ 𝑇 ) ) |
| 36 |
25 26 35
|
3jca |
⊢ ( 𝑁 ∈ V → ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ) |
| 38 |
37
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ) |
| 39 |
|
reex |
⊢ ℝ ∈ V |
| 40 |
1 2 39
|
tngnm |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 41 |
40
|
3adant1 |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 42 |
1 3
|
tng0 |
⊢ ( 𝑁 ∈ V → 0 = ( 0g ‘ 𝑇 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → 0 = ( 0g ‘ 𝑇 ) ) |
| 44 |
43
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → 0 = ( 0g ‘ 𝑇 ) ) |
| 45 |
38 41 44
|
3jca |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) ) |
| 46 |
|
simp1 |
⊢ ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 47 |
46
|
3ad2ant1 |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 48 |
|
simp2 |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| 49 |
48
|
fveq1d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑁 ‘ 𝑥 ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 50 |
49
|
eqeq1d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ) ) |
| 51 |
|
simp3 |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → 0 = ( 0g ‘ 𝑇 ) ) |
| 52 |
51
|
eqeq2d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑥 = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) |
| 53 |
50 52
|
bibi12d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ) ) |
| 54 |
|
simp3 |
⊢ ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) → 𝐼 = ( invg ‘ 𝑇 ) ) |
| 55 |
54
|
3ad2ant1 |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → 𝐼 = ( invg ‘ 𝑇 ) ) |
| 56 |
55
|
fveq1d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝐼 ‘ 𝑥 ) = ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 57 |
48 56
|
fveq12d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 58 |
57 49
|
eqeq12d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ↔ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) ) |
| 59 |
|
simp2 |
⊢ ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) → + = ( +g ‘ 𝑇 ) ) |
| 60 |
59
|
3ad2ant1 |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → + = ( +g ‘ 𝑇 ) ) |
| 61 |
60
|
oveqd |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 62 |
48 61
|
fveq12d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) = ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ) |
| 63 |
|
fveq1 |
⊢ ( 𝑁 = ( norm ‘ 𝑇 ) → ( 𝑁 ‘ 𝑥 ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ) |
| 64 |
|
fveq1 |
⊢ ( 𝑁 = ( norm ‘ 𝑇 ) → ( 𝑁 ‘ 𝑦 ) = ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) |
| 65 |
63 64
|
oveq12d |
⊢ ( 𝑁 = ( norm ‘ 𝑇 ) → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 66 |
65
|
3ad2ant2 |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) |
| 67 |
62 66
|
breq12d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 68 |
47 67
|
raleqbidv |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) |
| 69 |
53 58 68
|
3anbi123d |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 70 |
47 69
|
raleqbidv |
⊢ ( ( ( 𝑋 = ( Base ‘ 𝑇 ) ∧ + = ( +g ‘ 𝑇 ) ∧ 𝐼 = ( invg ‘ 𝑇 ) ) ∧ 𝑁 = ( norm ‘ 𝑇 ) ∧ 0 = ( 0g ‘ 𝑇 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 71 |
45 70
|
syl |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑇 ) ( ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑇 ) ) ∧ ( ( norm ‘ 𝑇 ) ‘ ( ( invg ‘ 𝑇 ) ‘ 𝑥 ) ) = ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑇 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) ≤ ( ( ( norm ‘ 𝑇 ) ‘ 𝑥 ) + ( ( norm ‘ 𝑇 ) ‘ 𝑦 ) ) ) ) ) |
| 72 |
24 71
|
mpbird |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 73 |
10 72
|
jca |
⊢ ( ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ ℝ ) → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 74 |
73
|
3exp |
⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → ( 𝐺 ∈ Grp → ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) ) |
| 75 |
9 74
|
mpd |
⊢ ( ( 𝑁 ∈ V ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| 76 |
75
|
expcom |
⊢ ( 𝑇 ∈ NrmGrp → ( 𝑁 ∈ V → ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) ) |
| 77 |
76
|
com13 |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑁 ∈ V → ( 𝑇 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) ) |
| 78 |
8 77
|
mpd |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| 79 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 80 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → 𝐺 ∈ Grp ) |
| 81 |
80
|
adantl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝐺 ∈ Grp ) |
| 82 |
|
simpl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝑁 : 𝑋 ⟶ ℝ ) |
| 83 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑎 ) ) |
| 84 |
83
|
eqeq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ ( 𝑁 ‘ 𝑎 ) = 0 ) ) |
| 85 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 0 ↔ 𝑎 = 0 ) ) |
| 86 |
84 85
|
bibi12d |
⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ↔ ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 87 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑎 ) ) |
| 88 |
87
|
fveq2d |
⊢ ( 𝑥 = 𝑎 → ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) ) |
| 89 |
88 83
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ↔ ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) = ( 𝑁 ‘ 𝑎 ) ) ) |
| 90 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ) |
| 91 |
83
|
oveq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 92 |
90 91
|
breq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 93 |
92
|
ralbidv |
⊢ ( 𝑥 = 𝑎 → ( ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 94 |
86 89 93
|
3anbi123d |
⊢ ( 𝑥 = 𝑎 → ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) = ( 𝑁 ‘ 𝑎 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 95 |
94
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) = ( 𝑁 ‘ 𝑎 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 96 |
|
simp1 |
⊢ ( ( ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑎 ) ) = ( 𝑁 ‘ 𝑎 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) |
| 97 |
95 96
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) |
| 98 |
97
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝑎 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 99 |
98
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → ( 𝑎 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 100 |
99
|
adantl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → ( 𝑎 ∈ 𝑋 → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) ) |
| 101 |
100
|
imp |
⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ 𝑎 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑎 ) = 0 ↔ 𝑎 = 0 ) ) |
| 102 |
2 4 5 79
|
grpsubval |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) |
| 103 |
102
|
adantl |
⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) = ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) |
| 104 |
103
|
fveq2d |
⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ) = ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 105 |
|
3simpc |
⊢ ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 106 |
105
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 107 |
|
simpr |
⊢ ( ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 108 |
107
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) |
| 109 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( 𝑎 + 𝑦 ) = ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) |
| 110 |
109
|
fveq2d |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) = ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 111 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) |
| 112 |
111
|
oveq2d |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) = ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 113 |
110 112
|
breq12d |
⊢ ( 𝑦 = ( 𝐼 ‘ 𝑏 ) → ( ( 𝑁 ‘ ( 𝑎 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) |
| 114 |
92 113
|
rspc2v |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) |
| 115 |
2 5
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑏 ∈ 𝑋 ) → ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) |
| 116 |
115
|
ex |
⊢ ( 𝐺 ∈ Grp → ( 𝑏 ∈ 𝑋 → ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) ) |
| 117 |
116
|
anim2d |
⊢ ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 ∈ 𝑋 ∧ ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) ) ) |
| 118 |
117
|
imp |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ∈ 𝑋 ∧ ( 𝐼 ‘ 𝑏 ) ∈ 𝑋 ) ) |
| 119 |
114 118
|
syl11 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) → ( ( 𝐺 ∈ Grp ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) |
| 120 |
119
|
expd |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) → ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) ) |
| 121 |
108 120
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) ) |
| 122 |
121
|
imp |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) ) |
| 123 |
122
|
imp |
⊢ ( ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 124 |
|
simpl |
⊢ ( ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ) |
| 125 |
124
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ) |
| 126 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑏 ) ) |
| 127 |
126
|
fveq2d |
⊢ ( 𝑥 = 𝑏 → ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) |
| 128 |
|
fveq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝑏 ) ) |
| 129 |
127 128
|
eqeq12d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ↔ ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) = ( 𝑁 ‘ 𝑏 ) ) ) |
| 130 |
129
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) = ( 𝑁 ‘ 𝑏 ) ) |
| 131 |
130
|
eqcomd |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) |
| 132 |
131
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) → ( 𝑏 ∈ 𝑋 → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 133 |
125 132
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝑏 ∈ 𝑋 → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 134 |
133
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) → ( 𝑏 ∈ 𝑋 → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 135 |
134
|
adantld |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 136 |
135
|
imp |
⊢ ( ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ 𝑏 ) = ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) |
| 137 |
136
|
oveq2d |
⊢ ( ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) = ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 138 |
123 137
|
breqtrrd |
⊢ ( ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 139 |
138
|
ex |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ∧ 𝐺 ∈ Grp ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) |
| 140 |
139
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) ) |
| 141 |
106 140
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝐺 ∈ Grp → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) ) |
| 142 |
141
|
impcom |
⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) |
| 143 |
142
|
adantl |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) ) |
| 144 |
143
|
imp |
⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 + ( 𝐼 ‘ 𝑏 ) ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 145 |
104 144
|
eqbrtrd |
⊢ ( ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑎 ( -g ‘ 𝐺 ) 𝑏 ) ) ≤ ( ( 𝑁 ‘ 𝑎 ) + ( 𝑁 ‘ 𝑏 ) ) ) |
| 146 |
1 2 79 3 81 82 101 145
|
tngngpd |
⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) → 𝑇 ∈ NrmGrp ) |
| 147 |
146
|
ex |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) → 𝑇 ∈ NrmGrp ) ) |
| 148 |
78 147
|
impbid |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ∧ ( 𝑁 ‘ ( 𝐼 ‘ 𝑥 ) ) = ( 𝑁 ‘ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |