| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngngp.t | ⊢ 𝑇  =  ( 𝐺  toNrmGrp  𝑁 ) | 
						
							| 2 |  | tngngp.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 3 |  | tngngp.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | tngngp.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | tngngpd.1 | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 6 |  | tngngpd.2 | ⊢ ( 𝜑  →  𝑁 : 𝑋 ⟶ ℝ ) | 
						
							| 7 |  | tngngpd.3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝑥 )  =  0  ↔  𝑥  =   0  ) ) | 
						
							| 8 |  | tngngpd.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑁 ‘ ( 𝑥  −  𝑦 ) )  ≤  ( ( 𝑁 ‘ 𝑥 )  +  ( 𝑁 ‘ 𝑦 ) ) ) | 
						
							| 9 | 2 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 10 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 11 |  | fex2 | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ  ∧  𝑋  ∈  V  ∧  ℝ  ∈  V )  →  𝑁  ∈  V ) | 
						
							| 12 | 9 10 11 | mp3an23 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ  →  𝑁  ∈  V ) | 
						
							| 13 | 1 3 | tngds | ⊢ ( 𝑁  ∈  V  →  ( 𝑁  ∘   −  )  =  ( dist ‘ 𝑇 ) ) | 
						
							| 14 | 6 12 13 | 3syl | ⊢ ( 𝜑  →  ( 𝑁  ∘   −  )  =  ( dist ‘ 𝑇 ) ) | 
						
							| 15 | 2 3 4 5 6 7 8 | nrmmetd | ⊢ ( 𝜑  →  ( 𝑁  ∘   −  )  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 16 | 14 15 | eqeltrrd | ⊢ ( 𝜑  →  ( dist ‘ 𝑇 )  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 17 |  | eqid | ⊢ ( dist ‘ 𝑇 )  =  ( dist ‘ 𝑇 ) | 
						
							| 18 | 1 2 17 | tngngp2 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ  →  ( 𝑇  ∈  NrmGrp  ↔  ( 𝐺  ∈  Grp  ∧  ( dist ‘ 𝑇 )  ∈  ( Met ‘ 𝑋 ) ) ) ) | 
						
							| 19 | 6 18 | syl | ⊢ ( 𝜑  →  ( 𝑇  ∈  NrmGrp  ↔  ( 𝐺  ∈  Grp  ∧  ( dist ‘ 𝑇 )  ∈  ( Met ‘ 𝑋 ) ) ) ) | 
						
							| 20 | 5 16 19 | mpbir2and | ⊢ ( 𝜑  →  𝑇  ∈  NrmGrp ) |