| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngngpim.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
| 2 |
|
tngngpim.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
| 3 |
|
tngngpim.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 4 |
|
tngngpim.d |
⊢ 𝐷 = ( dist ‘ 𝑇 ) |
| 5 |
3 2
|
nmf |
⊢ ( 𝐺 ∈ NrmGrp → 𝑁 : 𝑋 ⟶ ℝ ) |
| 6 |
2
|
oveq2i |
⊢ ( 𝐺 toNrmGrp 𝑁 ) = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) ) |
| 7 |
1 6
|
eqtri |
⊢ 𝑇 = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) ) |
| 8 |
7
|
nrmtngnrm |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) ) |
| 9 |
1 3 4
|
tngngp2 |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐷 ∈ ( Met ‘ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 11 |
9 10
|
biimtrdi |
⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp → 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 12 |
11
|
com12 |
⊢ ( 𝑇 ∈ NrmGrp → ( 𝑁 : 𝑋 ⟶ ℝ → 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) → ( 𝑁 : 𝑋 ⟶ ℝ → 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 14 |
8 13
|
syl |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑁 : 𝑋 ⟶ ℝ → 𝐷 ∈ ( Met ‘ 𝑋 ) ) ) |
| 15 |
|
metf |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |
| 16 |
14 15
|
syl6 |
⊢ ( 𝐺 ∈ NrmGrp → ( 𝑁 : 𝑋 ⟶ ℝ → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) ) |
| 17 |
5 16
|
mpd |
⊢ ( 𝐺 ∈ NrmGrp → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) |