Step |
Hyp |
Ref |
Expression |
1 |
|
tngnm.t |
⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) |
2 |
|
tngnm.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
3 |
|
tngnm.a |
⊢ 𝐴 ∈ V |
4 |
|
simpr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 : 𝑋 ⟶ 𝐴 ) |
5 |
4
|
feqmptd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑁 ‘ 𝑥 ) ) ) |
6 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
7 |
2 6
|
grpsubf |
⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
9 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
11 |
2 10
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
13 |
9 12
|
opelxpd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ∈ ( 𝑋 × 𝑋 ) ) |
14 |
|
fvco3 |
⊢ ( ( ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) = ( 𝑁 ‘ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) ) ) |
15 |
8 13 14
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) = ( 𝑁 ‘ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) ) ) |
16 |
|
df-ov |
⊢ ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) = ( ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) |
17 |
|
df-ov |
⊢ ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) |
18 |
17
|
fveq2i |
⊢ ( 𝑁 ‘ ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) = ( 𝑁 ‘ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) ) |
19 |
15 16 18
|
3eqtr4g |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) = ( 𝑁 ‘ ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
20 |
2 10 6
|
grpsubid1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
21 |
20
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
22 |
21
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) = ( 𝑁 ‘ 𝑥 ) ) |
23 |
19 22
|
eqtr2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑥 ) = ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) ) |
24 |
23
|
mpteq2dva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) ) ) |
25 |
2
|
fvexi |
⊢ 𝑋 ∈ V |
26 |
|
fex2 |
⊢ ( ( 𝑁 : 𝑋 ⟶ 𝐴 ∧ 𝑋 ∈ V ∧ 𝐴 ∈ V ) → 𝑁 ∈ V ) |
27 |
25 3 26
|
mp3an23 |
⊢ ( 𝑁 : 𝑋 ⟶ 𝐴 → 𝑁 ∈ V ) |
28 |
27
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 ∈ V ) |
29 |
1 2
|
tngbas |
⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝑇 ) ) |
30 |
28 29
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
31 |
1 6
|
tngds |
⊢ ( 𝑁 ∈ V → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
32 |
28 31
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
33 |
|
eqidd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑥 = 𝑥 ) |
34 |
1 10
|
tng0 |
⊢ ( 𝑁 ∈ V → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝑇 ) ) |
35 |
28 34
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝑇 ) ) |
36 |
32 33 35
|
oveq123d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) = ( 𝑥 ( dist ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) |
37 |
30 36
|
mpteq12dv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑇 ) ↦ ( 𝑥 ( dist ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) ) |
38 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
40 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
41 |
|
eqid |
⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) |
42 |
38 39 40 41
|
nmfval |
⊢ ( norm ‘ 𝑇 ) = ( 𝑥 ∈ ( Base ‘ 𝑇 ) ↦ ( 𝑥 ( dist ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) |
43 |
37 42
|
eqtr4di |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) ) = ( norm ‘ 𝑇 ) ) |
44 |
5 24 43
|
3eqtrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 = ( norm ‘ 𝑇 ) ) |