| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngnrg.t | ⊢ 𝑇  =  ( 𝑅  toNrmGrp  𝐹 ) | 
						
							| 2 |  | tngnrg.a | ⊢ 𝐴  =  ( AbsVal ‘ 𝑅 ) | 
						
							| 3 | 2 | abvrcl | ⊢ ( 𝐹  ∈  𝐴  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐹  ∈  𝐴  →  𝑅  ∈  Grp ) | 
						
							| 6 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 7 | 1 6 | tngds | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹  ∘  ( -g ‘ 𝑅 ) )  =  ( dist ‘ 𝑇 ) ) | 
						
							| 8 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 9 | 8 2 6 | abvmet | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹  ∘  ( -g ‘ 𝑅 ) )  ∈  ( Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 10 | 7 9 | eqeltrrd | ⊢ ( 𝐹  ∈  𝐴  →  ( dist ‘ 𝑇 )  ∈  ( Met ‘ ( Base ‘ 𝑅 ) ) ) | 
						
							| 11 | 2 8 | abvf | ⊢ ( 𝐹  ∈  𝐴  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ ) | 
						
							| 12 |  | eqid | ⊢ ( dist ‘ 𝑇 )  =  ( dist ‘ 𝑇 ) | 
						
							| 13 | 1 8 12 | tngngp2 | ⊢ ( 𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ  →  ( 𝑇  ∈  NrmGrp  ↔  ( 𝑅  ∈  Grp  ∧  ( dist ‘ 𝑇 )  ∈  ( Met ‘ ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 14 | 11 13 | syl | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝑇  ∈  NrmGrp  ↔  ( 𝑅  ∈  Grp  ∧  ( dist ‘ 𝑇 )  ∈  ( Met ‘ ( Base ‘ 𝑅 ) ) ) ) ) | 
						
							| 15 | 5 10 14 | mpbir2and | ⊢ ( 𝐹  ∈  𝐴  →  𝑇  ∈  NrmGrp ) | 
						
							| 16 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 17 | 1 8 16 | tngnm | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐹 : ( Base ‘ 𝑅 ) ⟶ ℝ )  →  𝐹  =  ( norm ‘ 𝑇 ) ) | 
						
							| 18 | 5 11 17 | syl2anc | ⊢ ( 𝐹  ∈  𝐴  →  𝐹  =  ( norm ‘ 𝑇 ) ) | 
						
							| 19 |  | eqidd | ⊢ ( 𝐹  ∈  𝐴  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 1 8 | tngbas | ⊢ ( 𝐹  ∈  𝐴  →  ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑇 ) ) | 
						
							| 21 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 22 | 1 21 | tngplusg | ⊢ ( 𝐹  ∈  𝐴  →  ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑇 ) ) | 
						
							| 23 | 22 | oveqdr | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) | 
						
							| 24 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 25 | 1 24 | tngmulr | ⊢ ( 𝐹  ∈  𝐴  →  ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑇 ) ) | 
						
							| 26 | 25 | oveqdr | ⊢ ( ( 𝐹  ∈  𝐴  ∧  ( 𝑥  ∈  ( Base ‘ 𝑅 )  ∧  𝑦  ∈  ( Base ‘ 𝑅 ) ) )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑇 ) 𝑦 ) ) | 
						
							| 27 | 19 20 23 26 | abvpropd | ⊢ ( 𝐹  ∈  𝐴  →  ( AbsVal ‘ 𝑅 )  =  ( AbsVal ‘ 𝑇 ) ) | 
						
							| 28 | 2 27 | eqtrid | ⊢ ( 𝐹  ∈  𝐴  →  𝐴  =  ( AbsVal ‘ 𝑇 ) ) | 
						
							| 29 | 18 28 | eleq12d | ⊢ ( 𝐹  ∈  𝐴  →  ( 𝐹  ∈  𝐴  ↔  ( norm ‘ 𝑇 )  ∈  ( AbsVal ‘ 𝑇 ) ) ) | 
						
							| 30 | 29 | ibi | ⊢ ( 𝐹  ∈  𝐴  →  ( norm ‘ 𝑇 )  ∈  ( AbsVal ‘ 𝑇 ) ) | 
						
							| 31 |  | eqid | ⊢ ( norm ‘ 𝑇 )  =  ( norm ‘ 𝑇 ) | 
						
							| 32 |  | eqid | ⊢ ( AbsVal ‘ 𝑇 )  =  ( AbsVal ‘ 𝑇 ) | 
						
							| 33 | 31 32 | isnrg | ⊢ ( 𝑇  ∈  NrmRing  ↔  ( 𝑇  ∈  NrmGrp  ∧  ( norm ‘ 𝑇 )  ∈  ( AbsVal ‘ 𝑇 ) ) ) | 
						
							| 34 | 15 30 33 | sylanbrc | ⊢ ( 𝐹  ∈  𝐴  →  𝑇  ∈  NrmRing ) |