| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngbas.t | ⊢ 𝑇  =  ( 𝐺  toNrmGrp  𝑁 ) | 
						
							| 2 |  | tngsca.2 | ⊢ 𝐹  =  ( Scalar ‘ 𝐺 ) | 
						
							| 3 |  | scaid | ⊢ Scalar  =  Slot  ( Scalar ‘ ndx ) | 
						
							| 4 |  | slotstnscsi | ⊢ ( ( TopSet ‘ ndx )  ≠  ( Scalar ‘ ndx )  ∧  ( TopSet ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( TopSet ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) ) | 
						
							| 5 | 4 | simp1i | ⊢ ( TopSet ‘ ndx )  ≠  ( Scalar ‘ ndx ) | 
						
							| 6 | 5 | necomi | ⊢ ( Scalar ‘ ndx )  ≠  ( TopSet ‘ ndx ) | 
						
							| 7 |  | slotsdnscsi | ⊢ ( ( dist ‘ ndx )  ≠  ( Scalar ‘ ndx )  ∧  ( dist ‘ ndx )  ≠  (  ·𝑠  ‘ ndx )  ∧  ( dist ‘ ndx )  ≠  ( ·𝑖 ‘ ndx ) ) | 
						
							| 8 | 7 | simp1i | ⊢ ( dist ‘ ndx )  ≠  ( Scalar ‘ ndx ) | 
						
							| 9 | 8 | necomi | ⊢ ( Scalar ‘ ndx )  ≠  ( dist ‘ ndx ) | 
						
							| 10 | 1 3 6 9 | tnglem | ⊢ ( 𝑁  ∈  𝑉  →  ( Scalar ‘ 𝐺 )  =  ( Scalar ‘ 𝑇 ) ) | 
						
							| 11 | 2 10 | eqtrid | ⊢ ( 𝑁  ∈  𝑉  →  𝐹  =  ( Scalar ‘ 𝑇 ) ) |