| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngval.t | ⊢ 𝑇  =  ( 𝐺  toNrmGrp  𝑁 ) | 
						
							| 2 |  | tngval.m | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 3 |  | tngval.d | ⊢ 𝐷  =  ( 𝑁  ∘   −  ) | 
						
							| 4 |  | tngval.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 5 |  | elex | ⊢ ( 𝐺  ∈  𝑉  →  𝐺  ∈  V ) | 
						
							| 6 |  | elex | ⊢ ( 𝑁  ∈  𝑊  →  𝑁  ∈  V ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  𝑔  =  𝐺 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  𝑓  =  𝑁 ) | 
						
							| 9 | 7 | fveq2d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  ( -g ‘ 𝑔 )  =  ( -g ‘ 𝐺 ) ) | 
						
							| 10 | 9 2 | eqtr4di | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  ( -g ‘ 𝑔 )  =   −  ) | 
						
							| 11 | 8 10 | coeq12d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  ( 𝑓  ∘  ( -g ‘ 𝑔 ) )  =  ( 𝑁  ∘   −  ) ) | 
						
							| 12 | 11 3 | eqtr4di | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  ( 𝑓  ∘  ( -g ‘ 𝑔 ) )  =  𝐷 ) | 
						
							| 13 | 12 | opeq2d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) 〉  =  〈 ( dist ‘ ndx ) ,  𝐷 〉 ) | 
						
							| 14 | 7 13 | oveq12d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  ( 𝑔  sSet  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) 〉 )  =  ( 𝐺  sSet  〈 ( dist ‘ ndx ) ,  𝐷 〉 ) ) | 
						
							| 15 | 12 | fveq2d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  ( MetOpen ‘ ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 16 | 15 4 | eqtr4di | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  ( MetOpen ‘ ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) )  =  𝐽 ) | 
						
							| 17 | 16 | opeq2d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) ) 〉  =  〈 ( TopSet ‘ ndx ) ,  𝐽 〉 ) | 
						
							| 18 | 14 17 | oveq12d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑓  =  𝑁 )  →  ( ( 𝑔  sSet  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) 〉 )  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) ) 〉 )  =  ( ( 𝐺  sSet  〈 ( dist ‘ ndx ) ,  𝐷 〉 )  sSet  〈 ( TopSet ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 19 |  | df-tng | ⊢  toNrmGrp   =  ( 𝑔  ∈  V ,  𝑓  ∈  V  ↦  ( ( 𝑔  sSet  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) 〉 )  sSet  〈 ( TopSet ‘ ndx ) ,  ( MetOpen ‘ ( 𝑓  ∘  ( -g ‘ 𝑔 ) ) ) 〉 ) ) | 
						
							| 20 |  | ovex | ⊢ ( ( 𝐺  sSet  〈 ( dist ‘ ndx ) ,  𝐷 〉 )  sSet  〈 ( TopSet ‘ ndx ) ,  𝐽 〉 )  ∈  V | 
						
							| 21 | 18 19 20 | ovmpoa | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  V )  →  ( 𝐺  toNrmGrp  𝑁 )  =  ( ( 𝐺  sSet  〈 ( dist ‘ ndx ) ,  𝐷 〉 )  sSet  〈 ( TopSet ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 22 | 5 6 21 | syl2an | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑁  ∈  𝑊 )  →  ( 𝐺  toNrmGrp  𝑁 )  =  ( ( 𝐺  sSet  〈 ( dist ‘ ndx ) ,  𝐷 〉 )  sSet  〈 ( TopSet ‘ ndx ) ,  𝐽 〉 ) ) | 
						
							| 23 | 1 22 | eqtrid | ⊢ ( ( 𝐺  ∈  𝑉  ∧  𝑁  ∈  𝑊 )  →  𝑇  =  ( ( 𝐺  sSet  〈 ( dist ‘ ndx ) ,  𝐷 〉 )  sSet  〈 ( TopSet ‘ ndx ) ,  𝐽 〉 ) ) |