Metamath Proof Explorer


Theorem topclat

Description: A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypothesis topclat.i 𝐼 = ( toInc ‘ 𝐽 )
Assertion topclat ( 𝐽 ∈ Top → 𝐼 ∈ CLat )

Proof

Step Hyp Ref Expression
1 topclat.i 𝐼 = ( toInc ‘ 𝐽 )
2 1 ipobas ( 𝐽 ∈ Top → 𝐽 = ( Base ‘ 𝐼 ) )
3 eqidd ( 𝐽 ∈ Top → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) )
4 eqidd ( 𝐽 ∈ Top → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) )
5 1 ipopos 𝐼 ∈ Poset
6 5 a1i ( 𝐽 ∈ Top → 𝐼 ∈ Poset )
7 uniopn ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → 𝑥𝐽 )
8 simpl ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → 𝐽 ∈ Top )
9 simpr ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → 𝑥𝐽 )
10 eqidd ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) )
11 intmin ( 𝑥𝐽 { 𝑦𝐽 𝑥𝑦 } = 𝑥 )
12 11 eqcomd ( 𝑥𝐽 𝑥 = { 𝑦𝐽 𝑥𝑦 } )
13 7 12 syl ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → 𝑥 = { 𝑦𝐽 𝑥𝑦 } )
14 1 8 9 10 13 ipolubdm ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → ( 𝑥 ∈ dom ( lub ‘ 𝐼 ) ↔ 𝑥𝐽 ) )
15 7 14 mpbird ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → 𝑥 ∈ dom ( lub ‘ 𝐼 ) )
16 ssrab2 { 𝑦𝐽𝑦 𝑥 } ⊆ 𝐽
17 uniopn ( ( 𝐽 ∈ Top ∧ { 𝑦𝐽𝑦 𝑥 } ⊆ 𝐽 ) → { 𝑦𝐽𝑦 𝑥 } ∈ 𝐽 )
18 8 16 17 sylancl ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → { 𝑦𝐽𝑦 𝑥 } ∈ 𝐽 )
19 eqidd ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) )
20 eqidd ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → { 𝑦𝐽𝑦 𝑥 } = { 𝑦𝐽𝑦 𝑥 } )
21 1 8 9 19 20 ipoglbdm ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → ( 𝑥 ∈ dom ( glb ‘ 𝐼 ) ↔ { 𝑦𝐽𝑦 𝑥 } ∈ 𝐽 ) )
22 18 21 mpbird ( ( 𝐽 ∈ Top ∧ 𝑥𝐽 ) → 𝑥 ∈ dom ( glb ‘ 𝐼 ) )
23 2 3 4 6 15 22 isclatd ( 𝐽 ∈ Top → 𝐼 ∈ CLat )