Metamath Proof Explorer


Theorem topcld

Description: The underlying set of a topology is closed. Part of Theorem 6.1(1) of Munkres p. 93. (Contributed by NM, 3-Oct-2006)

Ref Expression
Hypothesis iscld.1 𝑋 = 𝐽
Assertion topcld ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 iscld.1 𝑋 = 𝐽
2 difid ( 𝑋𝑋 ) = ∅
3 0opn ( 𝐽 ∈ Top → ∅ ∈ 𝐽 )
4 2 3 eqeltrid ( 𝐽 ∈ Top → ( 𝑋𝑋 ) ∈ 𝐽 )
5 ssid 𝑋𝑋
6 4 5 jctil ( 𝐽 ∈ Top → ( 𝑋𝑋 ∧ ( 𝑋𝑋 ) ∈ 𝐽 ) )
7 1 iscld ( 𝐽 ∈ Top → ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ↔ ( 𝑋𝑋 ∧ ( 𝑋𝑋 ) ∈ 𝐽 ) ) )
8 6 7 mpbird ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) )