Metamath Proof Explorer


Theorem topgrpbas

Description: The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w 𝑊 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ }
Assertion topgrpbas ( 𝐵𝑋𝐵 = ( Base ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 topgrpfn.w 𝑊 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ }
2 1 topgrpstr 𝑊 Struct ⟨ 1 , 9 ⟩
3 baseid Base = Slot ( Base ‘ ndx )
4 snsstp1 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ }
5 4 1 sseqtrri { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ } ⊆ 𝑊
6 2 3 5 strfv ( 𝐵𝑋𝐵 = ( Base ‘ 𝑊 ) )