Metamath Proof Explorer


Theorem toplatglb

Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses topclat.i 𝐼 = ( toInc ‘ 𝐽 )
toplatlub.j ( 𝜑𝐽 ∈ Top )
toplatlub.s ( 𝜑𝑆𝐽 )
toplatglb.g 𝐺 = ( glb ‘ 𝐼 )
toplatglb.e ( 𝜑𝑆 ≠ ∅ )
Assertion toplatglb ( 𝜑 → ( 𝐺𝑆 ) = ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 topclat.i 𝐼 = ( toInc ‘ 𝐽 )
2 toplatlub.j ( 𝜑𝐽 ∈ Top )
3 toplatlub.s ( 𝜑𝑆𝐽 )
4 toplatglb.g 𝐺 = ( glb ‘ 𝐼 )
5 toplatglb.e ( 𝜑𝑆 ≠ ∅ )
6 4 a1i ( 𝜑𝐺 = ( glb ‘ 𝐼 ) )
7 intssuni ( 𝑆 ≠ ∅ → 𝑆 𝑆 )
8 5 7 syl ( 𝜑 𝑆 𝑆 )
9 3 unissd ( 𝜑 𝑆 𝐽 )
10 8 9 sstrd ( 𝜑 𝑆 𝐽 )
11 eqid 𝐽 = 𝐽
12 11 ntrval ( ( 𝐽 ∈ Top ∧ 𝑆 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝐽 ∩ 𝒫 𝑆 ) )
13 2 10 12 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( 𝐽 ∩ 𝒫 𝑆 ) )
14 2 uniexd ( 𝜑 𝐽 ∈ V )
15 14 10 ssexd ( 𝜑 𝑆 ∈ V )
16 inpw ( 𝑆 ∈ V → ( 𝐽 ∩ 𝒫 𝑆 ) = { 𝑥𝐽𝑥 𝑆 } )
17 16 unieqd ( 𝑆 ∈ V → ( 𝐽 ∩ 𝒫 𝑆 ) = { 𝑥𝐽𝑥 𝑆 } )
18 15 17 syl ( 𝜑 ( 𝐽 ∩ 𝒫 𝑆 ) = { 𝑥𝐽𝑥 𝑆 } )
19 13 18 eqtrd ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥𝐽𝑥 𝑆 } )
20 11 ntropn ( ( 𝐽 ∈ Top ∧ 𝑆 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 )
21 2 10 20 syl2anc ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 )
22 1 2 3 6 19 21 ipoglb ( 𝜑 → ( 𝐺𝑆 ) = ( ( int ‘ 𝐽 ) ‘ 𝑆 ) )