Metamath Proof Explorer


Theorem toplatglb0

Description: The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses topclat.i 𝐼 = ( toInc ‘ 𝐽 )
toplatlub.j ( 𝜑𝐽 ∈ Top )
toplatglb0.g 𝐺 = ( glb ‘ 𝐼 )
Assertion toplatglb0 ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐽 )

Proof

Step Hyp Ref Expression
1 topclat.i 𝐼 = ( toInc ‘ 𝐽 )
2 toplatlub.j ( 𝜑𝐽 ∈ Top )
3 toplatglb0.g 𝐺 = ( glb ‘ 𝐼 )
4 3 a1i ( 𝜑𝐺 = ( glb ‘ 𝐼 ) )
5 eqid 𝐽 = 𝐽
6 5 topopn ( 𝐽 ∈ Top → 𝐽𝐽 )
7 2 6 syl ( 𝜑 𝐽𝐽 )
8 1 4 7 ipoglb0 ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐽 )