Metamath Proof Explorer
Description: The empty intersection in a topology is realized by the base set.
(Contributed by Zhi Wang, 30-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
topclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐽 ) |
|
|
toplatlub.j |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
|
|
toplatglb0.g |
⊢ 𝐺 = ( glb ‘ 𝐼 ) |
|
Assertion |
toplatglb0 |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = ∪ 𝐽 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
topclat.i |
⊢ 𝐼 = ( toInc ‘ 𝐽 ) |
2 |
|
toplatlub.j |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
3 |
|
toplatglb0.g |
⊢ 𝐺 = ( glb ‘ 𝐼 ) |
4 |
3
|
a1i |
⊢ ( 𝜑 → 𝐺 = ( glb ‘ 𝐼 ) ) |
5 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
6 |
5
|
topopn |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ∪ 𝐽 ∈ 𝐽 ) |
8 |
1 4 7
|
ipoglb0 |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = ∪ 𝐽 ) |