Metamath Proof Explorer
		
		
		
		Description:  The empty intersection in a topology is realized by the base set.
         (Contributed by Zhi Wang, 30-Sep-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | topclat.i | ⊢ 𝐼  =  ( toInc ‘ 𝐽 ) | 
					
						|  |  | toplatlub.j | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
					
						|  |  | toplatglb0.g | ⊢ 𝐺  =  ( glb ‘ 𝐼 ) | 
				
					|  | Assertion | toplatglb0 | ⊢  ( 𝜑  →  ( 𝐺 ‘ ∅ )  =  ∪  𝐽 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | topclat.i | ⊢ 𝐼  =  ( toInc ‘ 𝐽 ) | 
						
							| 2 |  | toplatlub.j | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 3 |  | toplatglb0.g | ⊢ 𝐺  =  ( glb ‘ 𝐼 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  𝐺  =  ( glb ‘ 𝐼 ) ) | 
						
							| 5 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 6 | 5 | topopn | ⊢ ( 𝐽  ∈  Top  →  ∪  𝐽  ∈  𝐽 ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 𝜑  →  ∪  𝐽  ∈  𝐽 ) | 
						
							| 8 | 1 4 7 | ipoglb0 | ⊢ ( 𝜑  →  ( 𝐺 ‘ ∅ )  =  ∪  𝐽 ) |