Metamath Proof Explorer


Theorem toplatjoin

Description: Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses toplatmeet.i 𝐼 = ( toInc ‘ 𝐽 )
toplatmeet.j ( 𝜑𝐽 ∈ Top )
toplatmeet.a ( 𝜑𝐴𝐽 )
toplatmeet.b ( 𝜑𝐵𝐽 )
toplatjoin.j = ( join ‘ 𝐼 )
Assertion toplatjoin ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 toplatmeet.i 𝐼 = ( toInc ‘ 𝐽 )
2 toplatmeet.j ( 𝜑𝐽 ∈ Top )
3 toplatmeet.a ( 𝜑𝐴𝐽 )
4 toplatmeet.b ( 𝜑𝐵𝐽 )
5 toplatjoin.j = ( join ‘ 𝐼 )
6 eqid ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 )
7 1 ipopos 𝐼 ∈ Poset
8 7 a1i ( 𝜑𝐼 ∈ Poset )
9 6 5 8 3 4 joinval ( 𝜑 → ( 𝐴 𝐵 ) = ( ( lub ‘ 𝐼 ) ‘ { 𝐴 , 𝐵 } ) )
10 3 4 prssd ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝐽 )
11 6 a1i ( 𝜑 → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) )
12 uniprg ( ( 𝐴𝐽𝐵𝐽 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
13 3 4 12 syl2anc ( 𝜑 { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
14 unopn ( ( 𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽 ) → ( 𝐴𝐵 ) ∈ 𝐽 )
15 2 3 4 14 syl3anc ( 𝜑 → ( 𝐴𝐵 ) ∈ 𝐽 )
16 13 15 eqeltrd ( 𝜑 { 𝐴 , 𝐵 } ∈ 𝐽 )
17 intmin ( { 𝐴 , 𝐵 } ∈ 𝐽 { 𝑥𝐽 { 𝐴 , 𝐵 } ⊆ 𝑥 } = { 𝐴 , 𝐵 } )
18 16 17 syl ( 𝜑 { 𝑥𝐽 { 𝐴 , 𝐵 } ⊆ 𝑥 } = { 𝐴 , 𝐵 } )
19 18 13 eqtr2d ( 𝜑 → ( 𝐴𝐵 ) = { 𝑥𝐽 { 𝐴 , 𝐵 } ⊆ 𝑥 } )
20 1 2 10 11 19 15 ipolub ( 𝜑 → ( ( lub ‘ 𝐼 ) ‘ { 𝐴 , 𝐵 } ) = ( 𝐴𝐵 ) )
21 9 20 eqtrd ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐴𝐵 ) )