Metamath Proof Explorer


Theorem toplatlub

Description: Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses topclat.i 𝐼 = ( toInc ‘ 𝐽 )
toplatlub.j ( 𝜑𝐽 ∈ Top )
toplatlub.s ( 𝜑𝑆𝐽 )
toplatlub.u 𝑈 = ( lub ‘ 𝐼 )
Assertion toplatlub ( 𝜑 → ( 𝑈𝑆 ) = 𝑆 )

Proof

Step Hyp Ref Expression
1 topclat.i 𝐼 = ( toInc ‘ 𝐽 )
2 toplatlub.j ( 𝜑𝐽 ∈ Top )
3 toplatlub.s ( 𝜑𝑆𝐽 )
4 toplatlub.u 𝑈 = ( lub ‘ 𝐼 )
5 4 a1i ( 𝜑𝑈 = ( lub ‘ 𝐼 ) )
6 uniopn ( ( 𝐽 ∈ Top ∧ 𝑆𝐽 ) → 𝑆𝐽 )
7 2 3 6 syl2anc ( 𝜑 𝑆𝐽 )
8 intmin ( 𝑆𝐽 { 𝑥𝐽 𝑆𝑥 } = 𝑆 )
9 8 eqcomd ( 𝑆𝐽 𝑆 = { 𝑥𝐽 𝑆𝑥 } )
10 7 9 syl ( 𝜑 𝑆 = { 𝑥𝐽 𝑆𝑥 } )
11 1 2 3 5 10 7 ipolub ( 𝜑 → ( 𝑈𝑆 ) = 𝑆 )