Step |
Hyp |
Ref |
Expression |
1 |
|
toplatmeet.i |
⊢ 𝐼 = ( toInc ‘ 𝐽 ) |
2 |
|
toplatmeet.j |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
3 |
|
toplatmeet.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
4 |
|
toplatmeet.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) |
5 |
|
toplatmeet.m |
⊢ ∧ = ( meet ‘ 𝐼 ) |
6 |
|
eqid |
⊢ ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) |
7 |
1
|
ipopos |
⊢ 𝐼 ∈ Poset |
8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
9 |
6 5 8 3 4
|
meetval |
⊢ ( 𝜑 → ( 𝐴 ∧ 𝐵 ) = ( ( glb ‘ 𝐼 ) ‘ { 𝐴 , 𝐵 } ) ) |
10 |
3 4
|
prssd |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝐽 ) |
11 |
6
|
a1i |
⊢ ( 𝜑 → ( glb ‘ 𝐼 ) = ( glb ‘ 𝐼 ) ) |
12 |
|
intprg |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
13 |
3 4 12
|
syl2anc |
⊢ ( 𝜑 → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
14 |
|
inopn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) |
15 |
2 3 4 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ∈ 𝐽 ) |
16 |
13 15
|
eqeltrd |
⊢ ( 𝜑 → ∩ { 𝐴 , 𝐵 } ∈ 𝐽 ) |
17 |
|
unimax |
⊢ ( ∩ { 𝐴 , 𝐵 } ∈ 𝐽 → ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ { 𝐴 , 𝐵 } } = ∩ { 𝐴 , 𝐵 } ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ { 𝐴 , 𝐵 } } = ∩ { 𝐴 , 𝐵 } ) |
19 |
18 13
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∪ { 𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ ∩ { 𝐴 , 𝐵 } } ) |
20 |
1 2 10 11 19 15
|
ipoglb |
⊢ ( 𝜑 → ( ( glb ‘ 𝐼 ) ‘ { 𝐴 , 𝐵 } ) = ( 𝐴 ∩ 𝐵 ) ) |
21 |
9 20
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ∧ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) ) |