Description: A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | toplly | ⊢ Locally Top = Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llytop | ⊢ ( 𝑗 ∈ Locally Top → 𝑗 ∈ Top ) | |
2 | 1 | ssriv | ⊢ Locally Top ⊆ Top |
3 | resttop | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑥 ∈ 𝑗 ) → ( 𝑗 ↾t 𝑥 ) ∈ Top ) | |
4 | 3 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑗 ∈ Top ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ Top ) |
5 | ssidd | ⊢ ( ⊤ → Top ⊆ Top ) | |
6 | 4 5 | restlly | ⊢ ( ⊤ → Top ⊆ Locally Top ) |
7 | 6 | mptru | ⊢ Top ⊆ Locally Top |
8 | 2 7 | eqssi | ⊢ Locally Top = Top |