Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex ; an alternate proof uses indiscrete topologies (see indistop ) and the analogue of pwnex with pairs { (/) , x } instead of power sets ~P x (that analogue is also a consequence of abnex ). (Contributed by BJ, 2-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | topnex | ⊢ Top ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnex | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ∉ V | |
| 2 | 1 | neli | ⊢ ¬ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ∈ V |
| 3 | distop | ⊢ ( 𝑥 ∈ V → 𝒫 𝑥 ∈ Top ) | |
| 4 | 3 | elv | ⊢ 𝒫 𝑥 ∈ Top |
| 5 | eleq1 | ⊢ ( 𝑦 = 𝒫 𝑥 → ( 𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top ) ) | |
| 6 | 4 5 | mpbiri | ⊢ ( 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top ) |
| 7 | 6 | exlimiv | ⊢ ( ∃ 𝑥 𝑦 = 𝒫 𝑥 → 𝑦 ∈ Top ) |
| 8 | 7 | abssi | ⊢ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ⊆ Top |
| 9 | ssexg | ⊢ ( ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ⊆ Top ∧ Top ∈ V ) → { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ∈ V ) | |
| 10 | 8 9 | mpan | ⊢ ( Top ∈ V → { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ∈ V ) |
| 11 | 2 10 | mto | ⊢ ¬ Top ∈ V |
| 12 | 11 | nelir | ⊢ Top ∉ V |