Metamath Proof Explorer


Theorem topnex

Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex ; an alternate proof uses indiscrete topologies (see indistop ) and the analogue of pwnex with pairs { (/) , x } instead of power sets ~P x (that analogue is also a consequence of abnex ). (Contributed by BJ, 2-May-2021)

Ref Expression
Assertion topnex Top ∉ V

Proof

Step Hyp Ref Expression
1 pwnex { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ∉ V
2 1 neli ¬ { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ∈ V
3 distop ( 𝑥 ∈ V → 𝒫 𝑥 ∈ Top )
4 3 elv 𝒫 𝑥 ∈ Top
5 eleq1 ( 𝑦 = 𝒫 𝑥 → ( 𝑦 ∈ Top ↔ 𝒫 𝑥 ∈ Top ) )
6 4 5 mpbiri ( 𝑦 = 𝒫 𝑥𝑦 ∈ Top )
7 6 exlimiv ( ∃ 𝑥 𝑦 = 𝒫 𝑥𝑦 ∈ Top )
8 7 abssi { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ⊆ Top
9 ssexg ( ( { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ⊆ Top ∧ Top ∈ V ) → { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ∈ V )
10 8 9 mpan ( Top ∈ V → { 𝑦 ∣ ∃ 𝑥 𝑦 = 𝒫 𝑥 } ∈ V )
11 2 10 mto ¬ Top ∈ V
12 11 nelir Top ∉ V