Metamath Proof Explorer


Theorem topnfn

Description: The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion topnfn TopOpen Fn V

Proof

Step Hyp Ref Expression
1 ovex ( ( TopSet ‘ 𝑤 ) ↾t ( Base ‘ 𝑤 ) ) ∈ V
2 df-topn TopOpen = ( 𝑤 ∈ V ↦ ( ( TopSet ‘ 𝑤 ) ↾t ( Base ‘ 𝑤 ) ) )
3 1 2 fnmpti TopOpen Fn V