Step |
Hyp |
Ref |
Expression |
1 |
|
topnpropd.1 |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
2 |
|
topnpropd.2 |
⊢ ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐿 ) ) |
3 |
2 1
|
oveq12d |
⊢ ( 𝜑 → ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( ( TopSet ‘ 𝐿 ) ↾t ( Base ‘ 𝐿 ) ) ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) |
6 |
4 5
|
topnval |
⊢ ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
8 |
|
eqid |
⊢ ( TopSet ‘ 𝐿 ) = ( TopSet ‘ 𝐿 ) |
9 |
7 8
|
topnval |
⊢ ( ( TopSet ‘ 𝐿 ) ↾t ( Base ‘ 𝐿 ) ) = ( TopOpen ‘ 𝐿 ) |
10 |
3 6 9
|
3eqtr3g |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) |