| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topnval.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
topnval.2 |
⊢ 𝐽 = ( TopSet ‘ 𝑊 ) |
| 3 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( TopSet ‘ 𝑤 ) = ( TopSet ‘ 𝑊 ) ) |
| 4 |
3 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( TopSet ‘ 𝑤 ) = 𝐽 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 6 |
5 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 7 |
4 6
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( TopSet ‘ 𝑤 ) ↾t ( Base ‘ 𝑤 ) ) = ( 𝐽 ↾t 𝐵 ) ) |
| 8 |
|
df-topn |
⊢ TopOpen = ( 𝑤 ∈ V ↦ ( ( TopSet ‘ 𝑤 ) ↾t ( Base ‘ 𝑤 ) ) ) |
| 9 |
|
ovex |
⊢ ( 𝐽 ↾t 𝐵 ) ∈ V |
| 10 |
7 8 9
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( TopOpen ‘ 𝑊 ) = ( 𝐽 ↾t 𝐵 ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) ) |
| 12 |
|
0rest |
⊢ ( ∅ ↾t 𝐵 ) = ∅ |
| 13 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( TopSet ‘ 𝑊 ) = ∅ ) |
| 14 |
2 13
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐽 = ∅ ) |
| 15 |
14
|
oveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( ∅ ↾t 𝐵 ) ) |
| 16 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( TopOpen ‘ 𝑊 ) = ∅ ) |
| 17 |
12 15 16
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) ) |
| 18 |
11 17
|
pm2.61i |
⊢ ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) |