Step |
Hyp |
Ref |
Expression |
1 |
|
topnval.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
topnval.2 |
⊢ 𝐽 = ( TopSet ‘ 𝑊 ) |
3 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( TopSet ‘ 𝑤 ) = ( TopSet ‘ 𝑊 ) ) |
4 |
3 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( TopSet ‘ 𝑤 ) = 𝐽 ) |
5 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 ) |
7 |
4 6
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( TopSet ‘ 𝑤 ) ↾t ( Base ‘ 𝑤 ) ) = ( 𝐽 ↾t 𝐵 ) ) |
8 |
|
df-topn |
⊢ TopOpen = ( 𝑤 ∈ V ↦ ( ( TopSet ‘ 𝑤 ) ↾t ( Base ‘ 𝑤 ) ) ) |
9 |
|
ovex |
⊢ ( 𝐽 ↾t 𝐵 ) ∈ V |
10 |
7 8 9
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( TopOpen ‘ 𝑊 ) = ( 𝐽 ↾t 𝐵 ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) ) |
12 |
|
0rest |
⊢ ( ∅ ↾t 𝐵 ) = ∅ |
13 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( TopSet ‘ 𝑊 ) = ∅ ) |
14 |
2 13
|
eqtrid |
⊢ ( ¬ 𝑊 ∈ V → 𝐽 = ∅ ) |
15 |
14
|
oveq1d |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( ∅ ↾t 𝐵 ) ) |
16 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( TopOpen ‘ 𝑊 ) = ∅ ) |
17 |
12 15 16
|
3eqtr4a |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) ) |
18 |
11 17
|
pm2.61i |
⊢ ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) |