Metamath Proof Explorer


Theorem toponcom

Description: If K is a topology on the base set of topology J , then J is a topology on the base of K . (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion toponcom ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ ( TopOn ‘ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 toponuni ( 𝐾 ∈ ( TopOn ‘ 𝐽 ) → 𝐽 = 𝐾 )
2 1 eqcomd ( 𝐾 ∈ ( TopOn ‘ 𝐽 ) → 𝐾 = 𝐽 )
3 2 anim2i ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ ( TopOn ‘ 𝐽 ) ) → ( 𝐽 ∈ Top ∧ 𝐾 = 𝐽 ) )
4 istopon ( 𝐽 ∈ ( TopOn ‘ 𝐾 ) ↔ ( 𝐽 ∈ Top ∧ 𝐾 = 𝐽 ) )
5 3 4 sylibr ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ ( TopOn ‘ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ 𝐾 ) )