Description: If K is a topology on the base set of topology J , then J is a topology on the base of K . (Contributed by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | toponcom | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni | ⊢ ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) → ∪ 𝐽 = ∪ 𝐾 ) | |
2 | 1 | eqcomd | ⊢ ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) → ∪ 𝐾 = ∪ 𝐽 ) |
3 | 2 | anim2i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) → ( 𝐽 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐽 ) ) |
4 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ↔ ( 𝐽 ∈ Top ∧ ∪ 𝐾 = ∪ 𝐽 ) ) | |
5 | 3 4 | sylibr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |