Metamath Proof Explorer


Theorem toponmax

Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion toponmax ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵𝐽 )

Proof

Step Hyp Ref Expression
1 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = 𝐽 )
2 topontop ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top )
3 eqid 𝐽 = 𝐽
4 3 topopn ( 𝐽 ∈ Top → 𝐽𝐽 )
5 2 4 syl ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽𝐽 )
6 1 5 eqeltrd ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵𝐽 )