Description: The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 ∈ 𝐽 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = ∪ 𝐽 ) | |
2 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top ) | |
3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | topopn | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
5 | 2 4 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → ∪ 𝐽 ∈ 𝐽 ) |
6 | 1 5 | eqeltrd | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 ∈ 𝐽 ) |