Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni | ⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 3 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝑋 = ∪ 𝐽 ) |
| 5 | 2 4 | sseqtrrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |