Metamath Proof Explorer


Theorem toponss

Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion toponss ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴𝑋 )

Proof

Step Hyp Ref Expression
1 elssuni ( 𝐴𝐽𝐴 𝐽 )
2 1 adantl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴 𝐽 )
3 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
4 3 adantr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝑋 = 𝐽 )
5 2 4 sseqtrrd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴𝐽 ) → 𝐴𝑋 )