Metamath Proof Explorer


Theorem topontopi

Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis topontopi.1 𝐽 ∈ ( TopOn ‘ 𝐵 )
Assertion topontopi 𝐽 ∈ Top

Proof

Step Hyp Ref Expression
1 topontopi.1 𝐽 ∈ ( TopOn ‘ 𝐵 )
2 topontop ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐽 ∈ Top )
3 1 2 ax-mp 𝐽 ∈ Top