Metamath Proof Explorer


Theorem topontopn

Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tsettps.a 𝐴 = ( Base ‘ 𝐾 )
tsettps.j 𝐽 = ( TopSet ‘ 𝐾 )
Assertion topontopn ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 tsettps.a 𝐴 = ( Base ‘ 𝐾 )
2 tsettps.j 𝐽 = ( TopSet ‘ 𝐾 )
3 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 = 𝐽 )
4 eqimss2 ( 𝐴 = 𝐽 𝐽𝐴 )
5 3 4 syl ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽𝐴 )
6 sspwuni ( 𝐽 ⊆ 𝒫 𝐴 𝐽𝐴 )
7 5 6 sylibr ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 ⊆ 𝒫 𝐴 )
8 1 2 topnid ( 𝐽 ⊆ 𝒫 𝐴𝐽 = ( TopOpen ‘ 𝐾 ) )
9 7 8 syl ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) )