Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsettps.a | ⊢ 𝐴 = ( Base ‘ 𝐾 ) | |
| tsettps.j | ⊢ 𝐽 = ( TopSet ‘ 𝐾 ) | ||
| Assertion | topontopn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsettps.a | ⊢ 𝐴 = ( Base ‘ 𝐾 ) | |
| 2 | tsettps.j | ⊢ 𝐽 = ( TopSet ‘ 𝐾 ) | |
| 3 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 = ∪ 𝐽 ) | |
| 4 | eqimss2 | ⊢ ( 𝐴 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝐴 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → ∪ 𝐽 ⊆ 𝐴 ) |
| 6 | sspwuni | ⊢ ( 𝐽 ⊆ 𝒫 𝐴 ↔ ∪ 𝐽 ⊆ 𝐴 ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 ⊆ 𝒫 𝐴 ) |
| 8 | 1 2 | topnid | ⊢ ( 𝐽 ⊆ 𝒫 𝐴 → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |
| 9 | 7 8 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |