Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tsettps.a | ⊢ 𝐴 = ( Base ‘ 𝐾 ) | |
tsettps.j | ⊢ 𝐽 = ( TopSet ‘ 𝐾 ) | ||
Assertion | topontopn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsettps.a | ⊢ 𝐴 = ( Base ‘ 𝐾 ) | |
2 | tsettps.j | ⊢ 𝐽 = ( TopSet ‘ 𝐾 ) | |
3 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐴 = ∪ 𝐽 ) | |
4 | eqimss2 | ⊢ ( 𝐴 = ∪ 𝐽 → ∪ 𝐽 ⊆ 𝐴 ) | |
5 | 3 4 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → ∪ 𝐽 ⊆ 𝐴 ) |
6 | sspwuni | ⊢ ( 𝐽 ⊆ 𝒫 𝐴 ↔ ∪ 𝐽 ⊆ 𝐴 ) | |
7 | 5 6 | sylibr | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 ⊆ 𝒫 𝐴 ) |
8 | 1 2 | topnid | ⊢ ( 𝐽 ⊆ 𝒫 𝐴 → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |
9 | 7 8 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) → 𝐽 = ( TopOpen ‘ 𝐾 ) ) |