Description: A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | topontopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
2 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
3 | 1 2 | sylib | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |