Metamath Proof Explorer


Theorem topontopon

Description: A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion topontopon ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top )
2 toptopon2 ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐽 ) )
3 1 2 sylib ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝐽 ) )