Metamath Proof Explorer


Theorem toponunii

Description: The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypothesis topontopi.1 𝐽 ∈ ( TopOn ‘ 𝐵 )
Assertion toponunii 𝐵 = 𝐽

Proof

Step Hyp Ref Expression
1 topontopi.1 𝐽 ∈ ( TopOn ‘ 𝐵 )
2 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) → 𝐵 = 𝐽 )
3 1 2 ax-mp 𝐵 = 𝐽