Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 1open.1 | ⊢ 𝑋 = ∪ 𝐽 | |
Assertion | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1open.1 | ⊢ 𝑋 = ∪ 𝐽 | |
2 | ssid | ⊢ 𝐽 ⊆ 𝐽 | |
3 | uniopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐽 ⊆ 𝐽 ) → ∪ 𝐽 ∈ 𝐽 ) | |
4 | 2 3 | mpan2 | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽 ) |
5 | 1 4 | eqeltrid | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |