| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toptopon2 |
⊢ ( 𝑥 ∈ Top ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) |
| 2 |
|
fvex |
⊢ ( TopOn ‘ ∪ 𝑥 ) ∈ V |
| 3 |
|
eleq2 |
⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) ) |
| 4 |
|
eleq1 |
⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( 𝑦 ∈ ran TopOn ↔ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) |
| 5 |
3 4
|
anbi12d |
⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ↔ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) → 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) |
| 7 |
|
fntopon |
⊢ TopOn Fn V |
| 8 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
| 9 |
|
fnfvelrn |
⊢ ( ( TopOn Fn V ∧ ∪ 𝑥 ∈ V ) → ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) |
| 10 |
7 8 9
|
mp2an |
⊢ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn |
| 11 |
10
|
jctr |
⊢ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) → ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) |
| 12 |
6 11
|
impbii |
⊢ ( ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) |
| 13 |
5 12
|
bitrdi |
⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) ) |
| 14 |
2 13
|
spcev |
⊢ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
| 15 |
1 14
|
sylbi |
⊢ ( 𝑥 ∈ Top → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
| 16 |
|
funtopon |
⊢ Fun TopOn |
| 17 |
|
elrnrexdm |
⊢ ( Fun TopOn → ( 𝑦 ∈ ran TopOn → ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( 𝑦 ∈ ran TopOn → ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) ) |
| 19 |
|
rexex |
⊢ ( ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) → ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑦 ∈ ran TopOn → ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) |
| 21 |
|
19.42v |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) ) |
| 22 |
|
eqimss |
⊢ ( 𝑦 = ( TopOn ‘ 𝑧 ) → 𝑦 ⊆ ( TopOn ‘ 𝑧 ) ) |
| 23 |
22
|
sseld |
⊢ ( 𝑦 = ( TopOn ‘ 𝑧 ) → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) ) |
| 24 |
23
|
impcom |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) → 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
| 25 |
24
|
eximi |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
| 26 |
21 25
|
sylbir |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
| 27 |
20 26
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
| 28 |
|
topontop |
⊢ ( 𝑥 ∈ ( TopOn ‘ 𝑧 ) → 𝑥 ∈ Top ) |
| 29 |
28
|
exlimiv |
⊢ ( ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) → 𝑥 ∈ Top ) |
| 30 |
27 29
|
syl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → 𝑥 ∈ Top ) |
| 31 |
30
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → 𝑥 ∈ Top ) |
| 32 |
15 31
|
impbii |
⊢ ( 𝑥 ∈ Top ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
| 33 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ ran TopOn ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
| 34 |
32 33
|
bitr4i |
⊢ ( 𝑥 ∈ Top ↔ 𝑥 ∈ ∪ ran TopOn ) |
| 35 |
34
|
eqriv |
⊢ Top = ∪ ran TopOn |