Step |
Hyp |
Ref |
Expression |
1 |
|
toptopon2 |
⊢ ( 𝑥 ∈ Top ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) |
2 |
|
fvex |
⊢ ( TopOn ‘ ∪ 𝑥 ) ∈ V |
3 |
|
eleq2 |
⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) ) |
4 |
|
eleq1 |
⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( 𝑦 ∈ ran TopOn ↔ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) |
5 |
3 4
|
anbi12d |
⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ↔ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) ) |
6 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) → 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) |
7 |
|
fntopon |
⊢ TopOn Fn V |
8 |
|
vuniex |
⊢ ∪ 𝑥 ∈ V |
9 |
|
fnfvelrn |
⊢ ( ( TopOn Fn V ∧ ∪ 𝑥 ∈ V ) → ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) |
10 |
7 8 9
|
mp2an |
⊢ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn |
11 |
10
|
jctr |
⊢ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) → ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ) |
12 |
6 11
|
impbii |
⊢ ( ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ∧ ( TopOn ‘ ∪ 𝑥 ) ∈ ran TopOn ) ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) |
13 |
5 12
|
bitrdi |
⊢ ( 𝑦 = ( TopOn ‘ ∪ 𝑥 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ↔ 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) ) ) |
14 |
2 13
|
spcev |
⊢ ( 𝑥 ∈ ( TopOn ‘ ∪ 𝑥 ) → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
15 |
1 14
|
sylbi |
⊢ ( 𝑥 ∈ Top → ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
16 |
|
funtopon |
⊢ Fun TopOn |
17 |
|
elrnrexdm |
⊢ ( Fun TopOn → ( 𝑦 ∈ ran TopOn → ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) ) ) |
18 |
16 17
|
ax-mp |
⊢ ( 𝑦 ∈ ran TopOn → ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) ) |
19 |
|
rexex |
⊢ ( ∃ 𝑧 ∈ dom TopOn 𝑦 = ( TopOn ‘ 𝑧 ) → ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) |
20 |
18 19
|
syl |
⊢ ( 𝑦 ∈ ran TopOn → ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) |
21 |
|
19.42v |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) ) |
22 |
|
eqimss |
⊢ ( 𝑦 = ( TopOn ‘ 𝑧 ) → 𝑦 ⊆ ( TopOn ‘ 𝑧 ) ) |
23 |
22
|
sseld |
⊢ ( 𝑦 = ( TopOn ‘ 𝑧 ) → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) ) |
24 |
23
|
impcom |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) → 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
25 |
24
|
eximi |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( TopOn ‘ 𝑧 ) ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
26 |
21 25
|
sylbir |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 𝑦 = ( TopOn ‘ 𝑧 ) ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
27 |
20 26
|
sylan2 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) ) |
28 |
|
topontop |
⊢ ( 𝑥 ∈ ( TopOn ‘ 𝑧 ) → 𝑥 ∈ Top ) |
29 |
28
|
exlimiv |
⊢ ( ∃ 𝑧 𝑥 ∈ ( TopOn ‘ 𝑧 ) → 𝑥 ∈ Top ) |
30 |
27 29
|
syl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → 𝑥 ∈ Top ) |
31 |
30
|
exlimiv |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) → 𝑥 ∈ Top ) |
32 |
15 31
|
impbii |
⊢ ( 𝑥 ∈ Top ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
33 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ ran TopOn ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn ) ) |
34 |
32 33
|
bitr4i |
⊢ ( 𝑥 ∈ Top ↔ 𝑥 ∈ ∪ ran TopOn ) |
35 |
34
|
eqriv |
⊢ Top = ∪ ran TopOn |