Metamath Proof Explorer


Theorem topsn

Description: The only topology on a singleton is the discrete topology (which is also the indiscrete topology by pwsn ). (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion topsn ( 𝐽 ∈ ( TopOn ‘ { 𝐴 } ) → 𝐽 = 𝒫 { 𝐴 } )

Proof

Step Hyp Ref Expression
1 topgele ( 𝐽 ∈ ( TopOn ‘ { 𝐴 } ) → ( { ∅ , { 𝐴 } } ⊆ 𝐽𝐽 ⊆ 𝒫 { 𝐴 } ) )
2 1 simprd ( 𝐽 ∈ ( TopOn ‘ { 𝐴 } ) → 𝐽 ⊆ 𝒫 { 𝐴 } )
3 pwsn 𝒫 { 𝐴 } = { ∅ , { 𝐴 } }
4 1 simpld ( 𝐽 ∈ ( TopOn ‘ { 𝐴 } ) → { ∅ , { 𝐴 } } ⊆ 𝐽 )
5 3 4 eqsstrid ( 𝐽 ∈ ( TopOn ‘ { 𝐴 } ) → 𝒫 { 𝐴 } ⊆ 𝐽 )
6 2 5 eqssd ( 𝐽 ∈ ( TopOn ‘ { 𝐴 } ) → 𝐽 = 𝒫 { 𝐴 } )