Step |
Hyp |
Ref |
Expression |
1 |
|
totbndmet |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
2 |
|
1rp |
⊢ 1 ∈ ℝ+ |
3 |
|
istotbnd3 |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
5 |
|
oveq2 |
⊢ ( 𝑑 = 1 → ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
6 |
5
|
iuneq2d |
⊢ ( 𝑑 = 1 → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑑 = 1 → ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ↔ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑑 = 1 → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) |
9 |
8
|
rspcv |
⊢ ( 1 ∈ ℝ+ → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) |
10 |
2 4 9
|
mpsyl |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) |
11 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
12 |
|
elfpw |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin ) ) |
13 |
12
|
simplbi |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ⊆ 𝑋 ) |
14 |
13
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑣 ⊆ 𝑋 ) |
15 |
14
|
sselda |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 𝑧 ∈ 𝑋 ) |
16 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑋 ) |
17 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝑀 𝑦 ) ∈ ℝ ) |
18 |
11 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( 𝑧 𝑀 𝑦 ) ∈ ℝ ) |
19 |
|
metge0 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ ( 𝑧 𝑀 𝑦 ) ) |
20 |
11 15 16 19
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 0 ≤ ( 𝑧 𝑀 𝑦 ) ) |
21 |
18 20
|
ge0p1rpd |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ℝ+ ) |
22 |
21
|
fmpttd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) : 𝑣 ⟶ ℝ+ ) |
23 |
22
|
frnd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ+ ) |
24 |
12
|
simprbi |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ∈ Fin ) |
25 |
|
mptfi |
⊢ ( 𝑣 ∈ Fin → ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
26 |
|
rnfi |
⊢ ( ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
27 |
24 25 26
|
3syl |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
28 |
27
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
29 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
30 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) |
31 |
29 30
|
eleqtrrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
32 |
|
ne0i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ≠ ∅ ) |
33 |
|
dm0rn0 |
⊢ ( dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ ↔ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ ) |
34 |
|
ovex |
⊢ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ V |
35 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) |
36 |
34 35
|
dmmpti |
⊢ dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = 𝑣 |
37 |
36
|
eqeq1i |
⊢ ( dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ ↔ 𝑣 = ∅ ) |
38 |
|
iuneq1 |
⊢ ( 𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
39 |
37 38
|
sylbi |
⊢ ( dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
40 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅ |
41 |
39 40
|
eqtrdi |
⊢ ( dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅ ) |
42 |
33 41
|
sylbir |
⊢ ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅ ) |
43 |
42
|
necon3i |
⊢ ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ≠ ∅ → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ) |
44 |
31 32 43
|
3syl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ) |
45 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
46 |
23 45
|
sstrdi |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) |
47 |
|
ltso |
⊢ < Or ℝ |
48 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
49 |
47 48
|
mpan |
⊢ ( ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
50 |
28 44 46 49
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
51 |
23 50
|
sseldd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ+ ) |
52 |
|
metxmet |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
54 |
53
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
55 |
|
1red |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 1 ∈ ℝ ) |
56 |
46 50
|
sseldd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ) |
57 |
56
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ) |
58 |
46
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) |
59 |
44
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ) |
60 |
28
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
61 |
|
fimaxre2 |
⊢ ( ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) → ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤 ≤ 𝑑 ) |
62 |
58 60 61
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤 ≤ 𝑑 ) |
63 |
35
|
elrnmpt1 |
⊢ ( ( 𝑧 ∈ 𝑣 ∧ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ V ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
64 |
34 63
|
mpan2 |
⊢ ( 𝑧 ∈ 𝑣 → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
65 |
64
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
66 |
|
suprub |
⊢ ( ( ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤 ≤ 𝑑 ) ∧ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
67 |
58 59 62 65 66
|
syl31anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
68 |
|
leaddsub |
⊢ ( ( ( 𝑧 𝑀 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ) → ( ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ↔ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) ) |
69 |
18 55 57 68
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ↔ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) ) |
70 |
67 69
|
mpbid |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) |
71 |
|
blss2 |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 1 ∈ ℝ ∧ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ∧ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) ) → ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
72 |
54 15 16 55 57 70 71
|
syl33anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
73 |
72
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∀ 𝑧 ∈ 𝑣 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
74 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) |
75 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑦 |
76 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ball ‘ 𝑀 ) |
77 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) |
78 |
77
|
nfrn |
⊢ Ⅎ 𝑧 ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) |
79 |
|
nfcv |
⊢ Ⅎ 𝑧 ℝ |
80 |
|
nfcv |
⊢ Ⅎ 𝑧 < |
81 |
78 79 80
|
nfsup |
⊢ Ⅎ 𝑧 sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) |
82 |
75 76 81
|
nfov |
⊢ Ⅎ 𝑧 ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
83 |
74 82
|
nfss |
⊢ Ⅎ 𝑧 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
84 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
85 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ) |
86 |
85
|
sseq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) ) |
87 |
83 84 86
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ∀ 𝑧 ∈ 𝑣 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
88 |
73 87
|
sylibr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∀ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
89 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ∀ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
90 |
88 89
|
sylibr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
91 |
30 90
|
eqsstrrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑋 ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
92 |
51
|
rpxrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ* ) |
93 |
|
blssm |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ⊆ 𝑋 ) |
94 |
53 29 92 93
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ⊆ 𝑋 ) |
95 |
91 94
|
eqssd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
96 |
|
oveq2 |
⊢ ( 𝑑 = sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) → ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
97 |
96
|
rspceeqv |
⊢ ( ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ+ ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
98 |
51 95 97
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
99 |
98
|
rexlimdvaa |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
100 |
99
|
ralrimdva |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 → ∀ 𝑦 ∈ 𝑋 ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
101 |
|
isbnd |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝑋 ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
102 |
101
|
baib |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ∀ 𝑦 ∈ 𝑋 ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
103 |
100 102
|
sylibrd |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) ) |
104 |
1 10 103
|
sylc |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) |