| Step |
Hyp |
Ref |
Expression |
| 1 |
|
totbndmet |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
| 2 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 3 |
|
istotbnd3 |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) ) |
| 4 |
3
|
simprbi |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ) |
| 5 |
|
oveq2 |
⊢ ( 𝑑 = 1 → ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
| 6 |
5
|
iuneq2d |
⊢ ( 𝑑 = 1 → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑑 = 1 → ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ↔ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑑 = 1 → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) |
| 9 |
8
|
rspcv |
⊢ ( 1 ∈ ℝ+ → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) = 𝑋 → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) |
| 10 |
2 4 9
|
mpsyl |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) |
| 11 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
| 12 |
|
elfpw |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ↔ ( 𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin ) ) |
| 13 |
12
|
simplbi |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ⊆ 𝑋 ) |
| 14 |
13
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑣 ⊆ 𝑋 ) |
| 15 |
14
|
sselda |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 𝑧 ∈ 𝑋 ) |
| 16 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 𝑦 ∈ 𝑋 ) |
| 17 |
|
metcl |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 𝑀 𝑦 ) ∈ ℝ ) |
| 18 |
11 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( 𝑧 𝑀 𝑦 ) ∈ ℝ ) |
| 19 |
|
metge0 |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 0 ≤ ( 𝑧 𝑀 𝑦 ) ) |
| 20 |
11 15 16 19
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 0 ≤ ( 𝑧 𝑀 𝑦 ) ) |
| 21 |
18 20
|
ge0p1rpd |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ℝ+ ) |
| 22 |
21
|
fmpttd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) : 𝑣 ⟶ ℝ+ ) |
| 23 |
22
|
frnd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ+ ) |
| 24 |
12
|
simprbi |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → 𝑣 ∈ Fin ) |
| 25 |
|
mptfi |
⊢ ( 𝑣 ∈ Fin → ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
| 26 |
|
rnfi |
⊢ ( ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
| 27 |
24 25 26
|
3syl |
⊢ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
| 28 |
27
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
| 30 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) |
| 31 |
29 30
|
eleqtrrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑦 ∈ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
| 32 |
|
ne0i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ≠ ∅ ) |
| 33 |
|
dm0rn0 |
⊢ ( dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ ↔ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ ) |
| 34 |
|
ovex |
⊢ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ V |
| 35 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) |
| 36 |
34 35
|
dmmpti |
⊢ dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = 𝑣 |
| 37 |
36
|
eqeq1i |
⊢ ( dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ ↔ 𝑣 = ∅ ) |
| 38 |
|
iuneq1 |
⊢ ( 𝑣 = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
| 39 |
37 38
|
sylbi |
⊢ ( dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ) |
| 40 |
|
0iun |
⊢ ∪ 𝑥 ∈ ∅ ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅ |
| 41 |
39 40
|
eqtrdi |
⊢ ( dom ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅ ) |
| 42 |
33 41
|
sylbir |
⊢ ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) = ∅ → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ∅ ) |
| 43 |
42
|
necon3i |
⊢ ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ≠ ∅ → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ) |
| 44 |
31 32 43
|
3syl |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ) |
| 45 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 46 |
23 45
|
sstrdi |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) |
| 47 |
|
ltso |
⊢ < Or ℝ |
| 48 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
| 49 |
47 48
|
mpan |
⊢ ( ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
| 50 |
28 44 46 49
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
| 51 |
23 50
|
sseldd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ+ ) |
| 52 |
|
metxmet |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 53 |
52
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 55 |
|
1red |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → 1 ∈ ℝ ) |
| 56 |
46 50
|
sseldd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ) |
| 57 |
56
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ) |
| 58 |
46
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ) |
| 59 |
44
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ) |
| 60 |
28
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) |
| 61 |
|
fimaxre2 |
⊢ ( ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ∈ Fin ) → ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤 ≤ 𝑑 ) |
| 62 |
58 60 61
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤 ≤ 𝑑 ) |
| 63 |
35
|
elrnmpt1 |
⊢ ( ( 𝑧 ∈ 𝑣 ∧ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ V ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
| 64 |
34 63
|
mpan2 |
⊢ ( 𝑧 ∈ 𝑣 → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
| 65 |
64
|
adantl |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) |
| 66 |
|
suprub |
⊢ ( ( ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ⊆ ℝ ∧ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ≠ ∅ ∧ ∃ 𝑑 ∈ ℝ ∀ 𝑤 ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) 𝑤 ≤ 𝑑 ) ∧ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ∈ ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
| 67 |
58 59 62 65 66
|
syl31anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
| 68 |
|
leaddsub |
⊢ ( ( ( 𝑧 𝑀 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ) → ( ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ↔ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) ) |
| 69 |
18 55 57 68
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( ( ( 𝑧 𝑀 𝑦 ) + 1 ) ≤ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ↔ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) ) |
| 70 |
67 69
|
mpbid |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) |
| 71 |
|
blss2 |
⊢ ( ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 1 ∈ ℝ ∧ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ ∧ ( 𝑧 𝑀 𝑦 ) ≤ ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) − 1 ) ) ) → ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 72 |
54 15 16 55 57 70 71
|
syl33anc |
⊢ ( ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) ∧ 𝑧 ∈ 𝑣 ) → ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 73 |
72
|
ralrimiva |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∀ 𝑧 ∈ 𝑣 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 74 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) |
| 75 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑦 |
| 76 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ball ‘ 𝑀 ) |
| 77 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) |
| 78 |
77
|
nfrn |
⊢ Ⅎ 𝑧 ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) |
| 79 |
|
nfcv |
⊢ Ⅎ 𝑧 ℝ |
| 80 |
|
nfcv |
⊢ Ⅎ 𝑧 < |
| 81 |
78 79 80
|
nfsup |
⊢ Ⅎ 𝑧 sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) |
| 82 |
75 76 81
|
nfov |
⊢ Ⅎ 𝑧 ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
| 83 |
74 82
|
nfss |
⊢ Ⅎ 𝑧 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
| 84 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) |
| 85 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ) |
| 86 |
85
|
sseq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) ) |
| 87 |
83 84 86
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ∀ 𝑧 ∈ 𝑣 ( 𝑧 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 88 |
73 87
|
sylibr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∀ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 89 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ↔ ∀ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 90 |
88 89
|
sylibr |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 91 |
30 90
|
eqsstrrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑋 ⊆ ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 92 |
51
|
rpxrd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ* ) |
| 93 |
|
blssm |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ∧ sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ* ) → ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ⊆ 𝑋 ) |
| 94 |
53 29 92 93
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ⊆ 𝑋 ) |
| 95 |
91 94
|
eqssd |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 96 |
|
oveq2 |
⊢ ( 𝑑 = sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) → ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) |
| 97 |
96
|
rspceeqv |
⊢ ( ( sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ∈ ℝ+ ∧ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) sup ( ran ( 𝑧 ∈ 𝑣 ↦ ( ( 𝑧 𝑀 𝑦 ) + 1 ) ) , ℝ , < ) ) ) → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 98 |
51 95 97
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 ) ) → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 99 |
98
|
rexlimdvaa |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 → ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 100 |
99
|
ralrimdva |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 → ∀ 𝑦 ∈ 𝑋 ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 101 |
|
isbnd |
⊢ ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝑋 ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 102 |
101
|
baib |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( 𝑀 ∈ ( Bnd ‘ 𝑋 ) ↔ ∀ 𝑦 ∈ 𝑋 ∃ 𝑑 ∈ ℝ+ 𝑋 = ( 𝑦 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 103 |
100 102
|
sylibrd |
⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑋 ∩ Fin ) ∪ 𝑥 ∈ 𝑣 ( 𝑥 ( ball ‘ 𝑀 ) 1 ) = 𝑋 → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) ) |
| 104 |
1 10 103
|
sylc |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Bnd ‘ 𝑋 ) ) |