Metamath Proof Explorer


Theorem totbndss

Description: A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion totbndss ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 istotbnd ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )
2 1 simprbi ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) )
3 sseq2 ( 𝑣 = 𝑋 → ( 𝑆 𝑣𝑆𝑋 ) )
4 3 biimprcd ( 𝑆𝑋 → ( 𝑣 = 𝑋𝑆 𝑣 ) )
5 4 anim1d ( 𝑆𝑋 → ( ( 𝑣 = 𝑋 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑆 𝑣 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )
6 5 reximdv ( 𝑆𝑋 → ( ∃ 𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ Fin ( 𝑆 𝑣 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )
7 6 ralimdv ( 𝑆𝑋 → ( ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑆 𝑣 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )
8 2 7 mpan9 ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑆 𝑣 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) )
9 totbndmet ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) )
10 eqid ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) = ( 𝑀 ↾ ( 𝑆 × 𝑆 ) )
11 10 sstotbnd ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ↔ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑆 𝑣 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )
12 9 11 sylan ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ↔ ∀ 𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑆 𝑣 ∧ ∀ 𝑏𝑣𝑥𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) )
13 8 12 mpbird ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆𝑋 ) → ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) )