Step |
Hyp |
Ref |
Expression |
1 |
|
istotbnd |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
2 |
1
|
simprbi |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
3 |
|
sseq2 |
⊢ ( ∪ 𝑣 = 𝑋 → ( 𝑆 ⊆ ∪ 𝑣 ↔ 𝑆 ⊆ 𝑋 ) ) |
4 |
3
|
biimprcd |
⊢ ( 𝑆 ⊆ 𝑋 → ( ∪ 𝑣 = 𝑋 → 𝑆 ⊆ ∪ 𝑣 ) ) |
5 |
4
|
anim1d |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
6 |
5
|
reximdv |
⊢ ( 𝑆 ⊆ 𝑋 → ( ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
7 |
6
|
ralimdv |
⊢ ( 𝑆 ⊆ 𝑋 → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
8 |
2 7
|
mpan9 |
⊢ ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
9 |
|
totbndmet |
⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑀 ∈ ( Met ‘ 𝑋 ) ) |
10 |
|
eqid |
⊢ ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) = ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) |
11 |
10
|
sstotbnd |
⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
12 |
9 11
|
sylan |
⊢ ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( 𝑆 ⊆ ∪ 𝑣 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
13 |
8 12
|
mpbird |
⊢ ( ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑀 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( TotBnd ‘ 𝑆 ) ) |