Metamath Proof Explorer


Theorem tpass

Description: Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion tpass { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 } ∪ { 𝐵 , 𝐶 } )

Proof

Step Hyp Ref Expression
1 df-tp { 𝐵 , 𝐶 , 𝐴 } = ( { 𝐵 , 𝐶 } ∪ { 𝐴 } )
2 tprot { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 }
3 uncom ( { 𝐴 } ∪ { 𝐵 , 𝐶 } ) = ( { 𝐵 , 𝐶 } ∪ { 𝐴 } )
4 1 2 3 3eqtr4i { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 } ∪ { 𝐵 , 𝐶 } )