Metamath Proof Explorer


Theorem tpcoma

Description: Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015)

Ref Expression
Assertion tpcoma { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐴 , 𝐶 }

Proof

Step Hyp Ref Expression
1 prcom { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 }
2 1 uneq1i ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) = ( { 𝐵 , 𝐴 } ∪ { 𝐶 } )
3 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
4 df-tp { 𝐵 , 𝐴 , 𝐶 } = ( { 𝐵 , 𝐴 } ∪ { 𝐶 } )
5 2 3 4 3eqtr4i { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐴 , 𝐶 }