Metamath Proof Explorer


Theorem tpcomb

Description: Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015)

Ref Expression
Assertion tpcomb { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 , 𝐵 }

Proof

Step Hyp Ref Expression
1 tpcoma { 𝐵 , 𝐶 , 𝐴 } = { 𝐶 , 𝐵 , 𝐴 }
2 tprot { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 }
3 tprot { 𝐴 , 𝐶 , 𝐵 } = { 𝐶 , 𝐵 , 𝐴 }
4 1 2 3 3eqtr4i { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 , 𝐵 }