Metamath Proof Explorer


Theorem tpeq123d

Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014)

Ref Expression
Hypotheses tpeq1d.1 ( 𝜑𝐴 = 𝐵 )
tpeq123d.2 ( 𝜑𝐶 = 𝐷 )
tpeq123d.3 ( 𝜑𝐸 = 𝐹 )
Assertion tpeq123d ( 𝜑 → { 𝐴 , 𝐶 , 𝐸 } = { 𝐵 , 𝐷 , 𝐹 } )

Proof

Step Hyp Ref Expression
1 tpeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 tpeq123d.2 ( 𝜑𝐶 = 𝐷 )
3 tpeq123d.3 ( 𝜑𝐸 = 𝐹 )
4 1 tpeq1d ( 𝜑 → { 𝐴 , 𝐶 , 𝐸 } = { 𝐵 , 𝐶 , 𝐸 } )
5 2 tpeq2d ( 𝜑 → { 𝐵 , 𝐶 , 𝐸 } = { 𝐵 , 𝐷 , 𝐸 } )
6 3 tpeq3d ( 𝜑 → { 𝐵 , 𝐷 , 𝐸 } = { 𝐵 , 𝐷 , 𝐹 } )
7 4 5 6 3eqtrd ( 𝜑 → { 𝐴 , 𝐶 , 𝐸 } = { 𝐵 , 𝐷 , 𝐹 } )