Metamath Proof Explorer


Theorem tpeq1d

Description: Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014)

Ref Expression
Hypothesis tpeq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion tpeq1d ( 𝜑 → { 𝐴 , 𝐶 , 𝐷 } = { 𝐵 , 𝐶 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 tpeq1d.1 ( 𝜑𝐴 = 𝐵 )
2 tpeq1 ( 𝐴 = 𝐵 → { 𝐴 , 𝐶 , 𝐷 } = { 𝐵 , 𝐶 , 𝐷 } )
3 1 2 syl ( 𝜑 → { 𝐴 , 𝐶 , 𝐷 } = { 𝐵 , 𝐶 , 𝐷 } )