Metamath Proof Explorer


Theorem tpeq2

Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion tpeq2 ( 𝐴 = 𝐵 → { 𝐶 , 𝐴 , 𝐷 } = { 𝐶 , 𝐵 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 preq2 ( 𝐴 = 𝐵 → { 𝐶 , 𝐴 } = { 𝐶 , 𝐵 } )
2 1 uneq1d ( 𝐴 = 𝐵 → ( { 𝐶 , 𝐴 } ∪ { 𝐷 } ) = ( { 𝐶 , 𝐵 } ∪ { 𝐷 } ) )
3 df-tp { 𝐶 , 𝐴 , 𝐷 } = ( { 𝐶 , 𝐴 } ∪ { 𝐷 } )
4 df-tp { 𝐶 , 𝐵 , 𝐷 } = ( { 𝐶 , 𝐵 } ∪ { 𝐷 } )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → { 𝐶 , 𝐴 , 𝐷 } = { 𝐶 , 𝐵 , 𝐷 } )