Metamath Proof Explorer


Theorem tpeq3

Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion tpeq3 ( 𝐴 = 𝐵 → { 𝐶 , 𝐷 , 𝐴 } = { 𝐶 , 𝐷 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 sneq ( 𝐴 = 𝐵 → { 𝐴 } = { 𝐵 } )
2 1 uneq2d ( 𝐴 = 𝐵 → ( { 𝐶 , 𝐷 } ∪ { 𝐴 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝐵 } ) )
3 df-tp { 𝐶 , 𝐷 , 𝐴 } = ( { 𝐶 , 𝐷 } ∪ { 𝐴 } )
4 df-tp { 𝐶 , 𝐷 , 𝐵 } = ( { 𝐶 , 𝐷 } ∪ { 𝐵 } )
5 2 3 4 3eqtr4g ( 𝐴 = 𝐵 → { 𝐶 , 𝐷 , 𝐴 } = { 𝐶 , 𝐷 , 𝐵 } )