Metamath Proof Explorer


Theorem tpex

Description: An unordered triple of classes exists. (Contributed by NM, 10-Apr-1994)

Ref Expression
Assertion tpex { 𝐴 , 𝐵 , 𝐶 } ∈ V

Proof

Step Hyp Ref Expression
1 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
2 prex { 𝐴 , 𝐵 } ∈ V
3 snex { 𝐶 } ∈ V
4 2 3 unex ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∈ V
5 1 4 eqeltri { 𝐴 , 𝐵 , 𝐶 } ∈ V